
1

Informatique Cours
Logique - SAT Ipesup

Objectifs

À l’issue de cette section, l’étudiant devra être capable de :
— comprendre le problème SAT et la notion de satisfiabilité ;
— modéliser un problème combinatoire sous forme de formule logique ;
— comprendre le principe de résolution de 2-SAT par graphe d’implication.

De nombreux algorithmiques admettent une réponse binaire. Ce sont des problèmes de déci-
sion. Le problème SAT entre dans cette catégorie, en cherchant à déterminer si une formule
est satisfiable. Il revêt une importance considérable, car il est le cadre naturel pour formali-
ser, et tenter de résoudre, des problèmes de satisfaction de contraintes, de planification, de
model-checking (vérification de propriété d’un modèle) ou de cryptographie.
Le problème SAT est cependant un problème difficile, pour lequel on ne connaît que des
algorithmes dont la complexité dans le pire cas est exponentielle. Et on n’a guère d’espoirs
d’améliorer un jour ce pire cas, sachant que Cook et Levin ont établi, dans les années 1970, que
le problème SAT est NP-complet. Malgré tout, les années 2000 ont vu émerger de nombreuses
propositions de codes permettant le traitement de problèmes SAT ayant des milliers de
variables propositionnelles et des millions de contraintes. Il existe même des compétitions de
SAT solver (http://www.satcompetition.org/).

Problème SAT
Le problème SAT est un problème de décision qui détermine si une formule de la
logique propositionnelle est satisfiable ou non.

— SAT(φ) = V si φ est satisfiable.
— SAT(φ) = F si φ est contradictoire.

Souvent, la recherche automatisée d’une solution se fait à partir de la forme CNF d’une
formule : on parle de problème CNF-SAT. La restriction du problème SAT aux CNF
ayant au plus k littéraux par clause est appelée problème k-SAT.

Dans tous les cas, une approche naïve énumère toutes les valuations possibles d’une formule
pour vérifier si l’une d’entre elles satisfait la formule.
Mais si φ est une formule qui comporte n variables propositionnelles, il existe 2n interpréta-
tions possibles pour φ. Cette première approche est donc généralement vouée à l’échec pour
des formules comportant un grand nombre de variables.
Certains algorithmes permettent toutefois d’accélérer la découverte d’une solution.

Format DIMACS

Les solveurs SAT sont des programmes qui résolvent un problème SAT.
Les formules sous forme CNF ou DNF y sont décrites suivant des règles simples dans un
fichier au format dit DIMACS-CNF.

2

Ce dernier n’est autre qu’un fichier texte dont
— les premières lignes sont des commentaires signalés par la présence d’un caractère c en

début de chaque ligne.
— La ligne suivante commence par un p et décrit la nature du problème en précisant

la forme normale codée : cnf ou dnf. Deux entiers indiquent le nombre de variables
propositionnelles et le nombre de clauses.

— Viennent ensuite les descriptions de chaque clause sous la forme de suites d’entiers. Le
format adopte la convention suivante :

— une variable propositionnelle est représentée par un entier strictement positif ;
— sa négation par l’entier opposé ;
— la fin d’une ligne est indiquée par la présence d’un 0.

Exemple
c x y z ¬x ¬y ¬z
c 1 2 3 -1 -2 -3
p cnf 3 5
-1 0
-1 -2 0
-1 3 0
-2 3 0
3 0

(¬x) ∨ (¬x ∧ ¬y) ∨ (¬x ∧ z) ∨ (¬y ∧ z) ∨ (z)

1 Algorithme de Quine

L’algorithme de Quine cherche à déterminer la satisfiabilité d’une formule en construisant
un arbre de décision. L’idée est de remplacer chaque variable propositionnelle par ⊤ d’une
part, et ⊥ d’autre part, chacune de ces options représentant une branche de l’arbre. Chaque
substitution, en plus de décrire un choix d’une branche dans l’arbre de décision, donne une
évaluation partielle de la formule. Si à un nœud de l’arbre, on constate que l’évaluation
partielle est déjà fausse, il est inutile de poursuivre l’exploration de cette branche.
Illustrons sa mise en œuvre avec la formule

φ = (x ∧ ¬z)→ (¬x ∧ ¬(y ∧ ¬z)).

On choisit d’abord de substituer x, puis, si nécessaire, de substituer y dans les formules
obtenues et enfin, si nécessaire encore, de substituer z dans les dernières formules.
Après chaque substitution, on simplifie la formule à l’aide des équations suivantes :

φ ∧ ⊥ ≡ ⊥ φ ∧ ⊤ ≡ φ ¬⊤ ≡ ⊥
φ ∨ ⊤ ≡ ⊤ φ ∨ ⊥ ≡ φ ¬⊥ ≡ ⊤
φ→ ⊤ ≡ ⊤ ⊤ → φ ≡ φ φ→ ⊥ ≡ ¬φ

3

Figure 1 – Algorithme de Quine

— On obtient tout d’abord avec x :

φ1 = φ{x←⊤} = ¬z → ⊥ φ2 = φ{x←⊥} = ⊤

On peut déjà constater que la substitution {x← ⊥} suffit à satisfaire la formule. Mais
en pratique, selon le code qui met en œuvre l’algorithme de Quine, cette solution ne
sera pas forcément découverte avant d’avoir exploré la branche correspondant à φ1.
Poursuivons donc les substitutions.

— On obtient alors, en substituant y dans φ1 :

φ11 = φ
{y←⊤}
1 = (¬z → ⊥) φ12 = φ

{y←⊥}
1 = (¬z → ⊥)

— Une dernière substitution, de z dans φ11 et φ12, donne :

φ111 = φ
{z←⊤}
11 = ⊤ φ112 = φ

{z←⊥}
11 = ⊥

φ121 = φ
{z←⊤}
12 = ⊤ φ122 = φ

{z←⊥}
12 = ⊥

Considerons les suivantes formules

Simplification de formules

let smart_not f = match f with
| True -> False
| False -> True
| _ -> Not f

let smart_and f1 f2 = match f1, f2 with
| False, _ | _, False -> False
| True, f | f, True -> f
| _, _ -> Bin (And, f1, f2)

let smart_or f1 f2 = match f1, f2 with
| True, _ | _, True -> True
| False, f | f, False -> f
| _, _ -> Bin (Or, f1, f2)

4

let smart_imp f1 f2 = match f1, f2 with
| False, _ | _, True -> True
| True, f -> f
| f, False -> smart_not f
| _, _ -> Bin (Imp, f1, f2)

let rec simplify f = match f with
| Var _ | True | False -> f
| Not f -> smart_not (simplify f)
| Bin (And, f1, f2) -> smart_and (simplify f1) (simplify f2)
| Bin (Or, f1, f2) -> smart_or (simplify f1) (simplify f2)
| Bin (Imp, f1, f2) -> smart_imp (simplify f1) (simplify f2)

La fonction simplify utilise des smart constructors, c’est-à-dire des fonctions qui se com-
portent comme un constructeur du type fmla, mais appliquent éventuellement des simplifi-
cations.
Le smart constructor de la conjonction, par exemple, reçoit deux formules φ1 et φ2 et renvoie
Bin(And, φ1, φ2), sauf s’il est certain que le résultat sera équivalent à ⊤, ⊥ ou à l’une des
deux sous-formules φ1 ou φ2, auquel cas il renvoie directement la formule simplifiée à la place
d’une conjonction.
Alors on peut definir la fonction quine_sat que met en œuvre l’algorithme de Quine,

Algorithme de Quine

let rec quine_sat f =
match simplify f with
| True -> true
| False -> false
| f -> let x = varmax f in

quine_sat (subst x True f) || quine_sat (subst x False f)

en substituant à chaque étape la variable de plus grand numéro encore présente.
La simplification consiste alors à appliquer le smart constructor correspondant à chaque
constructeur de la formule, en partant des feuilles pour s’assurer que les simplifications
puissent s’enchaîner en cascade.

2 Graphes orientés

Définition
Un graphe orienté est défini par un ensemble V de sommets et un ensemble E ⊆ V ×V
de couples de sommets appelés arcs.

Un arc (x, y) ∈ E est traditionnellement dessiné comme une flèche entre les sommets x et y.
Voici un exemple de graphe orienté avec six sommets et sept arcs :

5

On a V = {a, b, c, d, e, f} et

E = {(a, b), (a, d), (b, c), (b, d), (c, d), (d, b), (e, f)}.

Il est important de comprendre que le dessin importe peu. Seule la donnée des ensembles V
et E définit le graphe.
Entre deux sommets, il existe au plus un arc. Dit autrement, E est un ensemble, pas un
multiensemble. Il serait tout à fait possible d’autoriser de tels multi-arcs et on parlerait alors
de multi-graphe. Mais cette notion plus générale n’est pas considérée ici.

Définition– adjacence dans un graphe

Si (x, y) ∈ E, on dit que y est un successeur de x et que x est un prédécesseur de y.
On note x→ y la présence de cet arc.
Un arc de la forme (x, x) est appelé une boucle.
Pour un sommet x ∈ V , le nombre d’arcs de la forme (x, y) est appelé le degré sortant
du sommet x et noté d+(x).
De même, le nombre d’arcs de la forme (y, x) est appelé le degré entrant du sommet x
et noté d−(x).

Sur l’exemple ci-dessus, on a d−(a) = 0 et d+(a) = 2. Dans la suite, on utilisera aussi le terme
de voisins pour désigner les successeurs d’un sommet.

Définition– chemin dans un graphe

Un chemin du sommet u au sommet v dans un graphe (V,E) est une séquence x0, . . . , xn

de sommets de V tels que x0 = u, xn = v et (xi, xi+1) ∈ E pour 0 ≤ i < n :

u = x0 → x1 → · · · → xn−1 → xn = v.

La longueur d’un tel chemin est n, c’est-à-dire le nombre d’arcs qui le constitue.
Un chemin simple est un chemin sans répétition d’arc.
Un cycle est un chemin simple de u à u de longueur n > 0.
Un graphe orienté qui ne contient pas de cycle est appelé un DAG pour Directed Acyclic
Graph.

On note x0 →∗ xn la présence d’un chemin entre les sommets x0 et xn.
Il y a toujours un chemin de longueur 0 entre un sommet u et lui-même.

Définition– forte connexité

Un graphe orienté G = (V,E) est fortement connexe si, pour toute paire de sommets
x et y de V , il existe un chemin de x à y. Une composante fortement connexe de G
est un sous-ensemble de sommets deux à deux reliés par des chemins, maximal pour
l’inclusion.

6

Dans l’exemple de graphe donné plus haut, le graphe n’est pas fortement connexe car il n’y
a pas de chemin de b à a. En revanche, l’ensemble {b, c, d} est une composante fortement
connexe.

3 Une modélisation SAT

3.1 Position du problème.

Un algorithme glouton de coloration de graphe ne renvoie pas toujours la meilleure solution,
la logique propositionnelle constitue une approche alternative : pour ce faire, il convient
d’abord de formaliser le problème puis de le modéliser sous la forme d’une formule logique.
Considérons un graphe G = (V,E) où V est l’ensemble de ses n sommets (n ∈ N∗) et E
l’ensemble de ses arêtes. L’objectif est d’établir l’existence d’une coloration de G, c’est-à-dire
une application c qui associe à chacun des sommets de G un entier de

C = [0, k − 1], k ∈ N∗,

de sorte que si deux sommets u et v sont voisins alors leurs couleurs sont différentes :

∀(u, v) ∈ E, c(u) ̸= c(v).

Traduire ce problème en termes de logique propositionnelle requiert, dans un premier temps,
la définition d’un ensemble de variables propositionnelles. Choisissons de représenter chaque
sommet de G par un entier de sorte que V = [1, n] et chaque couleur par un entier j de C.
Un couple (i, j) définit une variable propositionnelle xij dans le sens où sa valeur de vérité
est V si j = c(i), F si j ̸= c(i).
L’ensemble des variables propositionnelles est ainsi :

V = V × C.

Parmi toutes ces variables propositionnelles, on en recherche un sous-ensemble qui satisfait
aux trois contraintes suivantes :

— chaque sommet a au moins une couleur ;
— chaque sommet a au plus une couleur ;
— deux sommets adjacents n’ont pas la même couleur.

3.2 Modélisation.

La première contrainte doit spécifier qu’à tout entier i ∈ V est associé au moins un élément
de j ∈ C. Ainsi, pour un sommet i fixé, le fait qu’il ait au moins une couleur peut se traduire
par la formule : ∨

j∈C

xij.

En l’appliquant à tous les sommets de G, on obtient la formule φ1 suivante :

φ1 =
∧
i∈V

 ∨
j∈C

xij

 .

7

La deuxième contrainte doit spécifier qu’un sommet i du graphe ne peut pas avoir plus d’une
couleur. Pour deux couleurs différentes j et j′ de C, la formule (xij ∧ xij′) doit être fausse ;
sa négation doit donc être vraie. Ce qu’on peut traduire, pour toutes paires de couleurs
différentes, par : ∧

(j,j′)∈C2, j ̸=j′

¬(xij ∧ xij′).

En l’appliquant à tous les sommets de G, on obtient la formule φ2 suivante :

φ2 =
∧
i∈V

∧
(j,j′)∈C2, j ̸=j′

¬(xij ∧ xij′).

La troisième et dernière contrainte doit spécifier que les sommets i et i′ de chaque arête
(i, i′) de E ne peuvent pas avoir la même couleur j. La formule ¬(xij ∧ xi′j) doit être vraie.
Appliquée à toutes les arêtes de G et pour toutes les couleurs possibles, on obtient la formule
φ3 suivante :

φ3 =
∧

(i,i′)∈E

∧
j∈C

¬(xij ∧ xi′j).

La formule finale qui modélise le problème de coloration d’un graphe est :

φ = φ1 ∧ φ2 ∧ φ3.

En transformant les négations de conjonctions en disjonctions de négations et en tenant
compte des priorités des connecteurs, cette expression prend la forme suivante :

φ =
 ∧

i∈V

∨
j∈C

xij

 ∧
 ∧

i∈V

∧
(j,j′)∈C2, j ̸=j′

(¬xij ∨ ¬xij′)
 ∧

 ∧
(i,i′)∈E

∧
j∈C

(¬xij ∨ ¬xi′j)
 .

Cette formule étant à présent définie, le programme suivant définit la fonction color2sat
qui renvoie une CNF associée à un graphe.

Coloration de graphe

let color2sat g k =
let n = size g in
let var s c = k * s + c + 1 in
let clauses = ref [] in

(* tous les sommets sont colorés *)
for s = 0 to n - 1 do

clauses := List.init k (fun c -> var s c) :: !clauses
done;

(* chaque sommet a une unique couleur *)
for s = 0 to n - 1 do

for c1 = 0 to k - 2 do
for c2 = c1 + 1 to k - 1 do

clauses := [-var s c1; -var s c2] :: !clauses
done

done

8

done;

(* deux sommets adjacents ont des couleurs différentes *)
List.iter (fun (s1, s2) ->

for c = 0 to k - 1 do
clauses := [-var s1 c; -var s2 c] :: !clauses

done) (edges g);

{ kind = CNF; nbvars = n * k; clauses = !clauses }

Un code disponible en ligne complète ce programme en définissant notamment une fonction
color_using_sat qui renvoie un tableau des couleurs attribuées à chaque sommet.

4 2-SAT

2-SAT occupe une position particulière puisqu’il peut être résolu avec une complexité tem-
porelle polynomiale. Dans ce problème, une CNF comporte au plus deux littéraux par clause :∨

i,j

(ℓi ∧ ℓj).

La formule suivante en est un exemple :

φ = (x ∨ ¬y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y) ∧ (x ∨ ¬z).

La satisfiabilité de la formule est établie en déplaçant le problème vers celui de la recherche
de composantes fortement connexes d’un graphe particulier appelé graphe d’implication. Le
principe de cette transformation repose sur les équivalences sémantiques

(ℓi ∨ ℓj) ≡ (¬ℓi)→ ℓj et (ℓi ∨ ℓj) ≡ (¬ℓj)→ ℓi.

Si une clause ne comporte qu’un seul littéral ℓi, sa forme équivalente est (ℓi ∨ ℓi).
Pour une 2-CNF φ à n variables propositionnelles et m clauses, le graphe d’implication G
comporte :

— 2n sommets, associés à chaque variable propositionnelle et chaque négation d’une va-
riable propositionnelle ;

— 2m arêtes orientées : à chaque clause (x∨ y), une arête est orientée du sommet associé
à ¬x vers le sommet associé à y ; une arête est orientée du sommet associé à ¬y vers
le sommet associé à x.

En termes de notations, on peut adopter les conventions suivantes.
— Les n variables propositionnelles sont désignées par x1, . . . , xn.
— À xi, on associe le sommet v2i−1 de G ; à ¬xi, on associe le sommet v2i.

Appliquons cette procédure à la formule φ précédente en définissant les sommets et les litté-
raux associés à chaque variable x, y, z et à leurs négations :

littéral ℓ1 = x associé au sommet v1 littéral ℓ2 = ¬x associé au sommet v2

littéral ℓ3 = y associé au sommet v3 littéral ℓ4 = ¬y associé au sommet v4

littéral ℓ5 = z associé au sommet v5 littéral ℓ6 = ¬z associé au sommet v6

9

La clause (x ∨ ¬y) étant équivalente à (¬x → ¬y) et (y → x), le graphe d’implication
recherché comporte les deux arêtes orientées (v2, v4) et (v3, v1). En procédant de même avec
les autres clauses, on définit les arêtes orientées suivantes :

(x ∨ ¬y) : (v2, v4), (v3, v1)
(¬x ∨ y) : (v1, v3), (v4, v2)
(¬x ∨ ¬y) : (v1, v4), (v3, v2)
(x ∨ ¬z) : (v2, v6), (v5, v1)

Ce qui mène au graphe

On peut observer que ce graphe présente une symétrie : d’une part en termes d’arêtes orien-
tées, d’autre part en termes de littéraux présents dans chaque composante fortement connexe.
L’intérêt d’un tel graphe est que décider si φ est satisfiable équivaut à montrer que chacune des
composantes fortement connexes ne contient jamais les deux sommets associés à une variable
propositionnelle et à sa négation. La preuve de ce résultat fournit même une procédure de
construction d’une valuation qui satisfait φ, quand cette dernière l’est effectivement.
Commençons par prouver la propriété suivante.

Propriété

Soit G le graphe d’implication d’une 2-CNF φ et vℓ, vℓ′ deux sommets de G associés
aux littéraux ℓ et ℓ′ de φ. S’il existe un chemin de vℓ à vℓ′ alors il existe un chemin de
v¬ℓ′ à v¬ℓ.

Demonstration

Notons tout d’abord que si φ contient la clause (ℓ∨ ℓ′) alors G contient les deux arêtes
orientées (v¬ℓ, vℓ′) et (v¬ℓ′ , vℓ).
Supposons qu’il existe un chemin (vℓ1 , vℓ2 , . . . , vℓp) dans G, chaque sommet vℓi

étant
associé à un littéral ℓi. Alors G contient les arêtes (vℓ1 , vℓ2), (vℓ2 , vℓ3), . . . , (vℓp−1 , vℓp).
Or, d’après l’observation précédente, pour chacune des arêtes (vℓi

, vℓi+1), G contient
également l’arête orientée (v¬ℓi+1 , v¬ℓi

).
Par conséquent,G contient la suite d’arêtes (v¬ℓp , v¬ℓp−1), (v¬ℓp−1 , v¬ℓp−2), . . . , (v¬ℓ2 , v¬ℓ1),
c’est-à-dire un chemin de v¬ℓp à v¬ℓ1 .

Propriété

Soit G le graphe d’implication d’une formule logique φ.
La formule φ est satisfiable si et seulement si aucune composante fortement connexe de
G ne contient à la fois le sommet associé à une variable propositionnelle et le sommet
associé à la négation de cette variable propositionnelle.

10

Demonstration
Si une composante fortement connexe contient les deux sommets associés à une
variable propositionnelle et à sa négation alors φ n’est pas satisfiable.

Soit vℓ et v¬ℓ les sommets associés à un littéral ℓ et à sa négation.
Supposons les dans une même composante fortement connexe de G. Il existe un chemin
de vℓ à v¬ℓ que l’on peut noter (vℓ, vℓ1 , . . . , vℓp , v¬ℓ). Alors φ contient la sous-formule :

ψ = (ℓ→ ℓ1) ∧ (ℓ1 → ℓ2) ∧ · · · ∧ (ℓp → ¬ℓ).

Supposons φ satisfiable. Il existe une valuation v telle que v(φ) = V et, par conséquent,
telle que v(ψ) = V.

— Supposons v(ℓ) = V. Alors nécessairement v(ℓ1) = V, puis v(ℓ2) = V et ainsi de
suite jusqu’à v(¬ℓ) = V. Ce résultat est incompatible avec l’hypothèse.

— Supposons v(ℓ) = F. Par la même analyse, on montre encore que cette hypothèse
est absurde.

Donc φ n’est pas satisfiable.

Si φ est satisfiable alors les sommets associés à ℓ et ¬ℓ sont dans des composantes
fortement connexes différentes.
Tout d’abord, remarquons que le graphe réduit à ses composantes fortement connexes
est un graphe orienté acyclique (DAG). On peut donc trier ses composantes à l’aide
d’un tri topologique. Alors, il existe au moins une composante dont aucune arête n’est
sortante.
En outre, comme établi plus haut, tous les littéraux des sommets d’une même compo-
sante fortement connexe ont la même valeur de vérité.
Définissons une valuation v telle que tous les littéraux de cette composante aient la
valeur de vérité V. D’après la propriété précédente, les négations de ces littéraux appar-
tiennent également à une même composante fortement connexe. On peut leur affecter
la valeur de vérité F.
Puis on supprime ces deux composantes fortement connexes du graphe et on recom-
mence la même procédure avec le DAG qui reste jusqu’à ce qu’il ne reste rien. On a
ainsi construit une valuation qui satisfait φ.

L’efficacité de cet algorithme dépend en particulier de celle de la construction des
composantes fortement connexes.

11

5 Logique du premier ordre

La logique du premier ordre affiche une première différence importante avec la logique pro-
positionnelle : elle ne manipule pas uniquement des propositions, mais également des objets
(les termes), qui ne sont pas eux-mêmes de nature logique, mais à propos desquels on pourra
exprimer des propriétés (par l’intermédiaire de prédicats). Les formules logiques du premier
ordre combinent ces propriétés à l’aide des connecteurs déjà connus, mais utilisent égale-
ment de nouveaux éléments (les quantificateurs) permettant d’exprimer que certains énoncés
s’appliquent à tout ou partie des termes.

5.0.1 Domaine, termes et prédicats

Illustrons notre propos en considérant un tableau a de 4 entiers a[0], a[1], a[2] et a[3]. Ces
éléments : le tableau, les valeurs contenues dans le tableau, et les indices des différentes cases,
constituent le domaine dont nos formules vont parler.
La notation a[i] peut être interprétée comme l’application d’un symbole de fonction pos à
a et à i de sorte que pos(a, i) renvoie a[i]. Considérons à présent un premier symbole de
prédicat noté even, d’arité 1, qui exprime la parité d’un entier. Ainsi, even(x) se traduit par
« x est pair ».
Un deuxième symbole de prédicat noté leq, d’arité 2, désigne la relation d’ordre « est inférieur
ou égal à » : leq(x, y) se traduit par « x est inférieur ou égal à y ».
Ces prédicats sont définis indépendamment de toute valeur de vérité, simplement comme
application d’un symbole à des arguments. À l’aide de ces symboles, on peut écrire des
expressions de la forme :

even(pos(a, 0)) leq(pos(a, 2), pos(a, 0))

qui expriment des propriétés élémentaires à propos des éléments de notre tableau, et sont des
formules logiques atomiques.
On peut combiner de telles formules atomiques à l’aide de connecteurs logiques, et par
exemple obtenir la formule plus complexe suivante :

even(pos(a, 0)) ∧ even(pos(a, 1)) ∧ even(pos(a, 2)) ∧ even(pos(a, 3))

Avec seulement quatre éléments dans le tableau, l’écriture de la formule est aisée. Avec un
plus grand nombre d’éléments, on peut lui préférer une notation plus compacte, exprimant
une conjonction sur un ensemble d’indices :

3∧
i=0

even(pos(a, i))

Mais il ne s’agit ici que d’une simple réécriture : la formule est toujours une grande conjonc-
tion. Pour traduire de manière plus directe qu’être pair est une propriété universelle des
éléments du tableau, on introduit un nouvel élément : le quantificateur universel ∀. On écrit
alors :

∀i ∈ [0, 3]. even(pos(a, i))

12

Une autre écriture équivalente est :

∀i. ((leq(0, i) ∧ leq(i, 3))→ even(pos(a, i)))

Cette dernière formule comporte une phrase à propos d’une variable i désignant un élément
indéterminé du domaine, et est considérée comme vraie dès lors que tous les éléments du
domaine valident effectivement cette phrase.
Dans cette formule, on distingue :

— les symboles de constantes 0, 3, a ;
— le symbole de fonction pos ;
— les symboles de prédicats leq, even ;
— le symbole de variable i ;
— les connecteurs ∧,→ ;
— le quantificateur ∀.

On définit alors :
— X l’ensemble infini dénombrable des symboles de variables ;
— Sf l’ensemble des symboles de fonctions ;
— Sp l’ensemble non vide des symboles de prédicats.

On suppose ces ensembles disjoints. On note Sk
f l’ensemble des symboles de fonctions d’arité

k, et Sk
p l’ensemble des symboles de prédicats d’arité k. Les éléments de S0

p sont appelés
propositions.

Exemple 10.6

Soit le symbole de constante Z (arité 0), le symbole de fonction suc (arité 1) représentant
le successeur, et les symboles de fonctions add et mul d’arité 2. Ainsi :

Sf = {Z(0), suc(1), add(2),mul(2)}.

Alors (X,Sf) définit une signature sur les entiers naturels. Si x, y ∈ X, l’expression
suivante est un terme :

add(mul(suc(suc(suc(Z))), x), suc(mul(suc(suc(Z)), y)))

qui représente l’expression mathématique (3x+ (2y + 1)).

5.0.2 Formules du premier ordre

Définition 10.22 – formule atomique

Une formule atomique sur (X,Sf , Sp) est une expression de la forme p(t1, . . . , tk) où
p ∈ Sk

p et t1, . . . , tk sont des termes.

Définition 10.23 – quantificateurs

En logique du premier ordre, on dispose de deux quantificateurs :
— le quantificateur universel ∀ ;
— le quantificateur existentiel ∃.

13

Définition 10.24 – formule du premier ordre

Une formule du premier ordre est définie inductivement par :
— toute formule atomique ;
— si φ est une formule, alors ¬φ en est une ;
— si φ et ψ sont des formules, alors (φ∧ψ), (φ∨ψ) et (φ→ ψ) sont des formules ;
— si x ∈ X et φ est une formule, alors (∀x.φ) et (∃x.φ) sont des formules.

Définition 10.25 – variables libres et liées
Une variable x ∈ X apparaissant à la suite d’un quantificateur est dite liée. Sinon, elle
est dite libre.

Définition 10.26 – portée

Dans une formule ∀x.φ ou ∃x.φ, la portée de x est la formule φ.

Substitution d’une variable On peut substituer une variable libre par un terme. Par
exemple :

(∃y. p(x, y)){x←f(z)} = ∃y. p(f(z), y).

Si la substitution concerne une variable apparaissant liée, il faut d’abord renommer les va-
riables liées afin d’éviter toute capture :

(∃y. p(x, y)){x←f(y)} = (∃z. p(x, z)){x←f(y)} = ∃z. p(f(y), z).

Définition 10.27 – substitution d’une variable libre
Soient φ et ψ deux formules logiques, t un terme et x une variable libre susceptible
d’être présente dans les deux formules. La substitution de x par t, notée {x ← t}, est
définie par induction comme suit :

p(t1, . . . , tk){x←t} = p
(
t
{x←t}
1 , . . . , t

{x←t}
k

)
(t1, . . . , tk termes, p ∈ Sk

p)

(¬φ){x←t} = ¬
(
φ{x←t}

)
(φ ⋄ ψ){x←t} = φ{x←t} ⋄ ψ{x←t} (⋄ connecteur binaire)

(∀y.φ){x←t} = ∀y.
(
φ{x←t}

)
(∃y.φ){x←t} = ∃y.

(
φ{x←t}

)
Variables propositionnelles et variables du premier ordre

Dans ce chapitre, la lettre x est utilisée selon le contexte pour désigner deux sortes de
variables de nature différente :

— les variables propositionnelles, représentant un fait logique indéterminé en logique
propositionnelle ;

— les variables du premier ordre, représentant un objet indéterminé du domaine en
logique du premier ordre.

Ces deux interprétations ne sont jamais mélangées dans une même formule et ne créent
donc pas d’ambiguïté.

14

Sémantique intuitive des quantificateurs

Donner formellement une sémantique aux formules du premier ordre est assez technique et
hors programme en MP2I/MPI. On se basera sur les interprétations intuitives suivantes.

Quantification universelle Une formule ∀x.φ est considérée comme valide si φ{x←v} est
vraie pour toutes les valeurs v que peut représenter la variable x dans le domaine.

Quantification existentielle Une formule ∃x.φ est considérée comme valide si φ{x←v} est
vraie pour au moins une valeur v du domaine.
On peut ainsi comprendre :

— ∀x.φ comme une conjonction (éventuellement infinie) de toutes les instanciations pos-
sibles de φ ;

— ∃x.φ comme la disjonction de ces mêmes instanciations.
En conséquence, les lois de De Morgan admettent un équivalent avec les quantificateurs :

¬(∀x.φ) ≡ ∃x.¬φ ¬(∃x.φ) ≡ ∀x.¬φ

Quantification bornée

Il est souvent utile de restreindre le domaine sur lequel porte une quantification. On écrit
alors, par abus de notation :

∀x ∈ E.φ ou ∃x ∈ E.φ

Ces écritures ne font pas partie de la syntaxe formelle, mais constituent un sucre syntaxique
pour les formules suivantes :

∀x ∈ E.φ ≡ ∀x. (x ∈ E → φ)

∃x ∈ E.φ ≡ ∃x. (x ∈ E ∧ φ)

Remarquons que les deux formules n’utilisent pas le même connecteur :
— ∀x. (x ∈ E → φ) considère tous les x imaginables, mais ne peut être mise en défaut

que pour les éléments du domaine E ;
— ∃x. (x ∈ E ∧ φ) impose explicitement que le témoin appartienne au domaine E.

Exemple 10.8 – spécification du plus petit élément d’un tableau

Considérons un tableau a de longueur n. Un objet x est le plus petit élément du tableau
a si :

— x appartient au tableau ;
— x est inférieur ou égal à tous les éléments du tableau.

Ces deux contraintes s’écrivent à l’aide de quantifications bornées :

∃i ∈ [0, n[. x = a[i] ∀i ∈ [0, n[. x ≤ a[i]

