Informatique Cours
Logique - SAT Ipesup

Objectifs

A Tissue de cette section, I'étudiant devra étre capable de :
— comprendre le probleme SAT et la notion de satisfiabilité ;
— modéliser un probleme combinatoire sous forme de formule logique;
— comprendre le principe de résolution de 2-SAT par graphe d’implication.

De nombreux algorithmiques admettent une réponse binaire. Ce sont des problémes de déci-
sion. Le probleme SAT entre dans cette catégorie, en cherchant a déterminer si une formule
est satisfiable. Il revét une importance considérable, car il est le cadre naturel pour formali-
ser, et tenter de résoudre, des problemes de satisfaction de contraintes, de planification, de
model-checking (vérification de propriété d'un modele) ou de cryptographie.

Le probleme SAT est cependant un probleme difficile, pour lequel on ne connait que des
algorithmes dont la complexité dans le pire cas est exponentielle. Et on n’a guere d’espoirs
d’améliorer un jour ce pire cas, sachant que Cook et Levin ont établi, dans les années 1970, que
le probleme SAT est NP-complet. Malgré tout, les années 2000 ont vu émerger de nombreuses
propositions de codes permettant le traitement de problemes SAT ayant des milliers de
variables propositionnelles et des millions de contraintes. Il existe méme des compétitions de
SAT solver (http://www.satcompetition.org/).

Probleme SAT

Le probléeme SAT est un probleme de décision qui détermine si une formule de la
logique propositionnelle est satisfiable ou non.

— SAT(p) =V si p est satisfiable.

— SAT(p) = F si ¢ est contradictoire.
Souvent, la recherche automatisée d’une solution se fait a partir de la forme CNF d’une
formule : on parle de probléeme CNF-SAT. La restriction du probleme SAT aux CNF
ayant au plus k littéraux par clause est appelée probleme k-SAT.

Dans tous les cas, une approche naive énumere toutes les valuations possibles d’une formule
pour vérifier si I'une d’entre elles satisfait la formule.

Mais si ¢ est une formule qui comporte n variables propositionnelles, il existe 2" interpréta-
tions possibles pour . Cette premiere approche est donc généralement vouée a I’échec pour
des formules comportant un grand nombre de variables.

Certains algorithmes permettent toutefois d’accélérer la découverte d'une solution.

Format DIMACS

Les solveurs SAT sont des programmes qui résolvent un probleme SAT.
Les formules sous forme CNF ou DNF y sont décrites suivant des regles simples dans un
fichier au format dit DIMACS-CNF.

Ce dernier n’est autre qu’un fichier texte dont

— les premieres lignes sont des commentaires signalés par la présence d’un caractere c en
début de chaque ligne.

— La ligne suivante commence par un p et décrit la nature du probléme en précisant
la forme normale codée : cnf ou dnf. Deux entiers indiquent le nombre de variables
propositionnelles et le nombre de clauses.

— Viennent ensuite les descriptions de chaque clause sous la forme de suites d’entiers. Le
format adopte la convention suivante :

— une variable propositionnelle est représentée par un entier strictement positif;
— sa négation par ’entier opposé;
— la fin d’une ligne est indiquée par la présence d’un 0.

CXyz™X 7y "z
c123-1-2-3
p cnf 35

-10

-1-20
-130

-230

30

(mx)V(—z A-y)V(mx Az)V(myAz)V(z)

1 Algorithme de Quine

L’algorithme de Quine cherche a déterminer la satisfiabilité d’une formule en construisant
un arbre de décision. L’idée est de remplacer chaque variable propositionnelle par T d’une
part, et L d’autre part, chacune de ces options représentant une branche de I'arbre. Chaque
substitution, en plus de décrire un choix d’une branche dans I’arbre de décision, donne une
évaluation partielle de la formule. Si & un nceud de 'arbre, on constate que ’évaluation
partielle est déja fausse, il est inutile de poursuivre I’exploration de cette branche.

[Mlustrons sa mise en ceuvre avec la formule
o= (xAN=z) = (mx A=y A—z)).

On choisit d’abord de substituer x, puis, si nécessaire, de substituer y dans les formules
obtenues et enfin, si nécessaire encore, de substituer z dans les dernieres formules.

Apres chaque substitution, on simplifie la formule a I’aide des équations suivantes :
pANLl=1l oAT=p -T=1

pVI=T oVl=p —-1=T
p=T=T T =2po=¢p p—=L=-p

(x A=z) = (ox A=(y A-z))

/ \
/
(mz—> 1) \J_
e N
-~ N
(mz > 1) (mz—> 1)
/ N\ /7 N\
/ AN / AN
T 1 T 1

— On obtient tout d’abord avec x :

{z+T} —

pr=¢ 2L =t =T

On peut déja constater que la substitution {z <— L} suffit a satisfaire la formule. Mais
en pratique, selon le code qui met en ceuvre 'algorithme de Quine, cette solution ne
sera pas forcément découverte avant d’avoir exploré la branche correspondant a .
Poursuivons donc les substitutions.

— On obtient alors, en substituant y dans ¢ :

Y11 = @iy%T} =(-z—1) P12 = @iygl} =(-z—1)

— Une derniere substitution, de z dans @11 et (15, donne :

Y111 = SOﬁHT} =T Pr12 = SOEHL} =1

p=0l V=T pm=pht =1

Considerons les suivantes formules

Simplification de formules

let smart not f = match f with
| True -> False
| False -> True
| -> Not f

let smart _and f1 f2 = match f1, f2 with

| False, _ | _, False -> False

| True, £ | £, True -> f

| _, _ -> Bin (And, f1, £2)
let smart or f1 f2 = match f1, f2 with

| True, _ | _, True -> True

| False, £ | £, False —> f

| -> Bin (Or, f1, £2)
let smart_imp f1 f2 = match f1, f2 with

| False, _ | _, True -> True

| True, f -> f
| £, False -> smart not f
I _, -> Bin (Imp, f1, £2)

let rec simplify f = match f with

| Var _ | True | False -> f

| Not f -> smart_not (simplify f)

| Bin (And, f1, £f2) -> smart_and (simplify f1) (simplify £2)
| Bin (Or, f1, £2) -> smart_or (simplify f1) (simplify £2)
|

Bin (Imp, f1, f2) -> smart_imp (simplify f1) (simplify £2)

La fonction simplify utilise des smart constructors, c’est-a-dire des fonctions qui se com-
portent comme un constructeur du type fmla, mais appliquent éventuellement des simplifi-
cations.

Le smart constructor de la conjonction, par exemple, recoit deux formules ¢ et @5 et renvoie
Bin(And, ¢, 9), sauf s’il est certain que le résultat sera équivalent a T, 1L ou a l'une des
deux sous-formules 1 ou s, auquel cas il renvoie directement la formule simplifiée a la place
d’une conjonction.

Alors on peut definir la fonction quine_sat que met en ceuvre l'algorithme de Quine,
Algorithme de Quine

let rec quine_sat f =
match simplify f with
| True -> true
| False -> false
| £ -> let x = varmax f in
quine_sat (subst x True f) || quine_sat (subst x False f)

en substituant a chaque étape la variable de plus grand numéro encore présente.

La simplification consiste alors a appliquer le smart constructor correspondant a chaque
constructeur de la formule, en partant des feuilles pour s’assurer que les simplifications
puissent s’enchainer en cascade.

2 Graphes orientés

Définition
Un graphe orienté est défini par un ensemble V' de sommets et un ensemble £ C V x V

de couples de sommets appelés arcs.

Un arc (z,y) € E est traditionnellement dessiné comme une fleche entre les sommets z et y.
Voici un exemple de graphe orienté avec six sommets et sept arcs :

OnaV ={ab,cde,f}et

E = {(a,0), (a,d), (b,¢c), (b, d), (c,d), (d, b), (e,)}

Il est important de comprendre que le dessin importe peu. Seule la donnée des ensembles V'
et E/ définit le graphe.

Entre deux sommets, il existe au plus un arc. Dit autrement, E est un ensemble, pas un
multiensemble. Il serait tout a fait possible d’autoriser de tels multi-arcs et on parlerait alors
de multi-graphe. Mais cette notion plus générale n’est pas considérée ici.

Définition— adjacence dans un graphe

Si (z,y) € E, on dit que y est un successeur de x et que = est un prédécesseur de y.
On note x — y la présence de cet arc.

Un arc de la forme (z,x) est appelé une boucle.

Pour un sommet x € V, le nombre d’arcs de la forme (z,y) est appelé le degré sortant
du sommet x et noté d(z).

De méme, le nombre d’arcs de la forme (y, z) est appelé le degré entrant du sommet x
et noté d_(z).

Sur I'exemple ci-dessus, on a d_(a) = 0 et d,(a) = 2. Dans la suite, on utilisera aussi le terme
de wvoisins pour désigner les successeurs d'un sommet.

Définition— chemin dans un graphe

Un chemin du sommet u au sommet v dans un graphe (V, E) est une séquence xy, . . ., T,
de sommets de V tels que g = u, x, = v et (z;,x;41) € Epour 0 <i < n:

U=Tyg—>T1—> """ > Tp-1—>Ty = 0.

La longueur d'un tel chemin est n, ¢’est-a-dire le nombre d’arcs qui le constitue.

Un chemin simple est un chemin sans répétition d’arc.

Un cycle est un chemin simple de v a u de longueur n > 0.

Un graphe orienté qui ne contient pas de cycle est appelé un DAG pour Directed Acyclic
Graph.

On note xg —* x,, la présence d’'un chemin entre les sommets xy et x,,.

Il y a toujours un chemin de longueur 0 entre un sommet u et lui-méme.

Définition— forte connexité

Un graphe orienté G = (V, E) est fortement connezxe si, pour toute paire de sommets
x et y de V, il existe un chemin de x a y. Une composante fortement connexe de G
est un sous-ensemble de sommets deux a deux reliés par des chemins, maximal pour
I'inclusion.

Dans 'exemple de graphe donné plus haut, le graphe n’est pas fortement connexe car il n’y
a pas de chemin de b & a. En revanche, 1’'ensemble {b,c,d} est une composante fortement
connexe.

3 Une modélisation SAT

3.1 Position du probleme.

Un algorithme glouton de coloration de graphe ne renvoie pas toujours la meilleure solution,
la logique propositionnelle constitue une approche alternative : pour ce faire, il convient
d’abord de formaliser le probleme puis de le modéliser sous la forme d’une formule logique.

Considérons un graphe G = (V, E) ou V est 'ensemble de ses n sommets (n € N*) et E
I’ensemble de ses arétes. L’objectif est d’établir I’existence d'une coloration de GG, ¢’est-a-dire
une application ¢ qui associe a chacun des sommets de G un entier de

C=[0,k—-1], keN
de sorte que si deux sommets u et v sont voisins alors leurs couleurs sont différentes :

Y(u,v) € E, c(u) # c(v).

Traduire ce probleme en termes de logique propositionnelle requiert, dans un premier temps,
la définition d’un ensemble de variables propositionnelles. Choisissons de représenter chaque
sommet de G par un entier de sorte que V' = [1,n] et chaque couleur par un entier j de C.
Un couple (4, j) définit une variable propositionnelle z;; dans le sens ou sa valeur de vérité
est Vsij=c(i), Fsij#c(i).

L’ensemble des variables propositionnelles est ainsi :
V=VxC.
Parmi toutes ces variables propositionnelles, on en recherche un sous-ensemble qui satisfait

aux trois contraintes suivantes :

— chaque sommet a au moins une couleur ;
— chaque sommet a au plus une couleur;
— deux sommets adjacents n’ont pas la méme couleur.

3.2 Modélisation.

La premiere contrainte doit spécifier qu’a tout entier ¢ € V' est associé au moins un élément
de 7 € C'. Ainsi, pour un sommet i fixé, le fait qu’il ait au moins une couleur peut se traduire
par la formule :

\/ Lij.

jeC

En l'appliquant a tous les sommets de GG, on obtient la formule ¢ suivante :

pr=/\ (\/%)

eV \jeC

La deuxieme contrainte doit spécifier qu'un sommet ¢ du graphe ne peut pas avoir plus d'une
couleur. Pour deux couleurs différentes j et 5’ de C, la formule (z;; A x;;7) doit étre fausse;
sa négation doit donc étre vraie. Ce qu’on peut traduire, pour toutes paires de couleurs

différentes, par :
N @y Ay,
(4,3")€C?, j#5'

En I'appliquant a tous les sommets de GG, on obtient la formule ¢y suivante :

p2=/\ N @iy Axg).

i€V (5,5")€C?, j#5"

La troisieme et derniere contrainte doit spécifier que les sommets 7 et i de chaque aréte
(i,4") de E ne peuvent pas avoir la méme couleur j. La formule —=(z;; A z/;) doit étre vraie.
Appliquée a toutes les arétes de G et pour toutes les couleurs possibles, on obtient la formule

(o3 suivante :
Y3 = /\ /\ _‘<xij N xi/j)'
(ii')eE jEC

La formule finale qui modélise le probleme de coloration d’un graphe est :
o =1 NP2 A ps.

En transformant les négations de conjonctions en disjonctions de négations et en tenant
compte des priorités des connecteurs, cette expression prend la forme suivante :

p= (/\ V xij) A (/\ AN G Y ﬁ%")) A ((AN ANGITAY Wz”j)) :

i€V jeC i€V (§,5')EC2, j#5! ii")EE j€C

Cette formule étant a présent définie, le programme suivant définit la fonction color2sat
qui renvoie une CNF associée a un graphe.

Coloration de graphe

let color2sat g k =
let n = size g in
let var s c =k * s + ¢ + 1 in
let clauses = ref [] in

(* tous les sommets sont colorés *)
for s =0 ton -1 do

clauses := List.init k (fun ¢ -> var s c) :: !clauses
done;

(* chaque sommet a une unique couleur *)
for s =0 ton -1 do
for c1 =0 to k - 2 do
for c2 =c1 +1 tok-1do
clauses := [-var s cl; -var s c2] :: !clauses
done
done

done;

(* deux sommets adjacents ont des couleurs différentes x)
List.iter (fun (s1, s2) ->
for c =0 tok -1do
clauses := [-var sl c; -var s2 c] :: !clauses
done) (edges g);

{ kind = CNF; nbvars = n * k; clauses = !clauses }

Un code disponible en ligne compléte ce programme en définissant notamment une fonction
color_using_sat qui renvoie un tableau des couleurs attribuées a chaque sommet.

4 2-SAT

2-SAT occupe une position particuliere puisqu’il peut étre résolu avec une complexité tem-
porelle polynomiale. Dans ce probleme, une CNF comporte au plus deux littéraux par clause :

\ (4 A).
ihj
La formule suivante en est un exemple :

e=(xV-Y AEzVy A(—xzV-y AV -oz).

La satisfiabilité de la formule est établie en déplacant le probléme vers celui de la recherche
de composantes fortement connexes d'un graphe particulier appelé graphe d’implication. Le
principe de cette transformation repose sur les équivalences sémantiques

Si une clause ne comporte qu’'un seul littéral ¢;, sa forme équivalente est (¢; V ¢;).

Pour une 2-CNF ¢ a n variables propositionnelles et m clauses, le graphe d’implication G
comporte :

— 2n sommets, associés a chaque variable propositionnelle et chaque négation d'une va-
riable propositionnelle ;

— 2m arétes orientées : a chaque clause (z V y), une aréte est orientée du sommet associé
a —x vers le sommet associé a y; une aréte est orientée du sommet associé a —y vers
le sommet associé a x.

En termes de notations, on peut adopter les conventions suivantes.

— Les n variables propositionnelles sont désignées par x1,...,x,.
— A x;, on associe le sommet vy;_1 de G ; & —x;, on associe le sommet vy;.

Appliquons cette procédure a la formule ¢ précédente en définissant les sommets et les litté-
raux associés a chaque variable x,y, z et a leurs négations :

littéral ¢; = x associé au sommet v; littéral ¢ = —x associé au sommet vy
littéral /3 = y associé au sommet v3 littéral ¢4 = —y associé au sommet vy

littéral /5 = z associé au sommet vy littéral fg = —z associé au sommet vg

La clause (x V —y) étant équivalente & (-z — —y) et (y — x), le graphe d’implication
recherché comporte les deux arétes orientées (ve,v4) et (vs,v1). En procédant de méme avec
les autres clauses, on définit les arétes orientées suivantes :

(xV —y) : (v2,v4), (v3,v1)
(mx Vy) : (v1,v3), (vg,V2)
(mx V —y) : (v1,v4), (v3,V2)
(x V =z) 1 (vg,vg), (s, V1)

Ce qui mene au graphe

On peut observer que ce graphe présente une symétrie : d’une part en termes d’arétes orien-
tées, d’autre part en termes de littéraux présents dans chaque composante fortement connexe.

L’intérét d’un tel graphe est que décider si @ est satisfiable équivaut a montrer que chacune des
composantes fortement connexes ne contient jamais les deux sommets associés a une variable
propositionnelle et a sa négation. La preuve de ce résultat fournit méme une procédure de
construction d’une valuation qui satisfait ¢, quand cette derniere 'est effectivement.

Commencons par prouver la propriété suivante.
Propriété

Soit G le graphe d’implication d'une 2-CNF ¢ et vy, vy deux sommets de G associés
aux littéraux £ et ¢/ de . S’il existe un chemin de v, a vy alors il existe un chemin de
Vo & Uy,

Demonstration

Notons tout d’abord que si ¢ contient la clause (¢ V ¢') alors G contient les deux arétes
orientées (U_\g,’Ug/) et (Uﬂg/,’U[).

Supposons quil existe un chemin (v, v, ..., v,) dans G, chaque sommet v, étant
associé a un littéral £;. Alors G contient les arétes (vy,,vy,), (Vey, Ves), -, (Ve,_y, Ve,)-
Or, d’apres l'observation précédente, pour chacune des arétes (vy,,v,,,), G contient
également l'aréte orientée (v_y,,,,v-y,).

Par conséquent, G contient la suite d’arétes (v, , v-¢,_,), (Vg,_1s Ve, 5)s - - -5 (Vty, Uty)
c’est-a-dire un chemin de v—y, a vy, .

Propriété

Soit G le graphe d’implication d'une formule logique .
La formule ¢ est satisfiable si et seulement si aucune composante fortement connexe de
G ne contient a la fois le sommet associé a une variable propositionnelle et le sommet
associé a la négation de cette variable propositionnelle.

10

Demonstration

Si une composante fortement connexe contient les deux sommets associés a4 une
variable propositionnelle et a sa négation alors @ n’est pas satisfiable.

Soit vy et v_p les sommets associés a un littéral £ et a sa négation.
Supposons les dans une méme composante fortement connexe de G. Il existe un chemin
de vy & v—¢ que l'on peut noter (ve, ve,, . .. ,vy,,v-¢). Alors ¢ contient la sous-formule :

w:<£_>£1)/\(£1_>£2)/\/\<£p_>_'€)

Supposons ¢ satisfiable. Il existe une valuation v telle que v(p) = V et, par conséquent,
telle que v(¢)) = V.
— Supposons v(¢) = V. Alors nécessairement v(¢y) = V, puis v(f2) = V et ainsi de
suite jusqu’a v(—¢) = V. Ce résultat est incompatible avec I’hypothese.
— Supposons v(¢) = F. Par la méme analyse, on montre encore que cette hypotheése
est absurde.
Donc ¢ n’est pas satisfiable.

St @ est satisfiable alors les sommets associés a ¢ et = sont dans des composantes
fortement connexes différentes.

Tout d’abord, remarquons que le graphe réduit a ses composantes fortement connexes
est un graphe orienté acyclique (DAG). On peut donc trier ses composantes a l’aide
d’un tri topologique. Alors, il existe au moins une composante dont aucune aréte n’est
sortante.

En outre, comme établi plus haut, tous les littéraux des sommets d’une méme compo-
sante fortement connexe ont la méme valeur de vérité.

Définissons une valuation v telle que tous les littéraux de cette composante aient la
valeur de vérité V. D’apres la propriété précédente, les négations de ces littéraux appar-
tiennent également a une méme composante fortement connexe. On peut leur affecter
la valeur de vérité F.

Puis on supprime ces deux composantes fortement connexes du graphe et on recom-
mence la méme procédure avec le DAG qui reste jusqu’a ce qu’il ne reste rien. On a
ainsi construit une valuation qui satisfait ¢.

L’efficacité de cet algorithme dépend en particulier de celle de la construction des
composantes fortement connexes.

