
1

Informatique Cours
Logique Ipesup

Objectifs

À l’issue de cette leçon, l’étudiant devra être capable de :
— comprendre la syntaxe et la sémantique de la logique propositionnelle, ainsi que

les notions de valuation, modèle et satisfiabilité ;
— manipuler et transformer des formules logiques à l’aide des équivalences séman-

tiques et des formes normales (NNF, CNF, DNF).

L’objet de la logique est la formalisation du discours et du raisonnement. On attribue à Aris-
tote l’une des premières tentatives de formalisation du raisonnement, à l’aide de ce qu’on
appelle la logique des syllogismes. La logique définit formellement à la fois le langage que
l’on utilise (aspects syntaxiques), et sa signification ou interprétation (aspects sémantiques).
La logique manipule des objets appelés formules, qui sont des objets structurés, construits à
partir de propositions élémentaires articulées par des connecteurs logiques et des quantifica-
teurs.
En informatique, la logique est le cadre naturel pour aborder les problèmes de décision. Ces
derniers tentent de répondre en termes algorithmiques à la question de l’existence d’une solu-
tion à un problème. De fait, la logique permet d’une part la formalisation d’un tel problème
par des formules logiques, et d’autre part la mise en œuvre d’algorithmes permettant l’analyse
et la résolution de ces formules.
La logique propositionnelle combine des faits élémentaires qui ne peuvent prendre que deux
valeurs : vrai ou faux. Par exemple, chacune des phrases suivantes affirme un fait, et ce fait
peut être vrai, ou être faux :

p1 : Il pleut.
p2 : Je prends mon parapluie.

En combinant de telles assertions, on produit de nouveaux énoncés dont le caractère de vérité
est discuté. Des connecteurs logiques permettent la construction de ces énoncés, à l’image des
conjonctions de coordination qui lient ou modifient le sens des phrases. Par exemple :

φ1 : Il pleut et je prends mon parapluie.
φ2 : Il pleut ou je prends mon parapluie.
φ3 : Puisqu’il pleut, je ne prends pas mon parapluie.
φ4 : Si je prends mon parapluie alors il pleut.

Toutes ces phrases sont correctes d’un point de vue syntaxique même si leur sémantique est
parfois étrange. Les deux phrases φ1 et φ2 sont construites à partir des phrases élémentaires
p1 et p2, liées par les mots et et ou. On parle de phrase conjonctive pour φ1 et de phrase
disjonctive pour φ2. Les phrases φ3 et φ4 expriment l’idée d’une implication. La phrase φ3
contient également une négation de la phrase p2, c’est-à-dire une phrase de sens contraire.

2

En logique, des notations permettent une écriture plus compacte de ces combinaisons :

φ1 = (p1 ∧ p2)
φ2 = (p1 ∨ p2)
φ3 = (p1 → (¬p2))
φ4 = (p2 → p1)

Les symboles ∧, ∨ et → sont des connecteurs binaires, qui permettent la construction d’un
nouvel énoncé à partir de deux énoncés.
Le premier réalise une conjonction : il relie deux énoncés qui doivent être tous deux vrais. Il
est nommé et.
Le deuxième réalise une disjonction : il relie deux énoncés dont l’un au moins doit être vrai.
Il est nommé ou.
Le troisième réalise une implication : il relie deux énoncés en exprimant que, dès lors que le
premier est vrai, le deuxième doit l’être aussi.
Le connecteur unaire ¬ s’applique à un unique énoncé pour en exprimer le contraire. Il s’agit
de la négation. Ainsi, ces notations rendent plus synthétique l’écriture des phrases.
Mais ce n’est pas là leur seul intérêt. Les connecteurs logiques explicitent la manière dont
les différents éléments d’une phrase sont articulés, de sorte à en retirer toutes les ambiguïtés
propres au langage courant, pour permettre ensuite un raisonnement rigoureux.
Par l’abstraction qu’ils apportent, les connecteurs donnent aussi des énoncés pouvant pré-
senter un intérêt plus large que celui du contexte qui a mené à leur écriture. Ainsi, quelle
que soit l’assertion désignée par la lettre p, l’expression ¬(p ∧ (¬p)) exprime plus largement
qu’une information ne peut être à la fois vraie et fausse. La logique propositionnelle va donc
s’attacher à analyser des structures logiques indépendamment de leur problème d’origine.
Mais la logique propositionnelle est incapable d’exprimer l’existence d’un objet ayant une
propriété donnée ou encore le fait que plusieurs objets partagent une même propriété. Une
proposition telle que p1 ou p2 a une structure interne, que l’on peut également intégrer à la
logique. La logique du premier ordre, également appelée logique des prédicats, permet cela.
Dans les énoncés suivants :

Le ciel est bleu.
L’encre est bleue.

le sujet est un argument qualifié par son attribut est bleu. En adoptant une notation synthé-
tique P pour exprimer l’idée d’être bleu, on peut ré-écrire les énoncés sous la forme P (encre)
et P (ciel). P est appelé un prédicat unaire. Les prédicats nous donnent donc une granularité
plus fine dans la structuration du discours, et vont permettre ainsi l’écriture d’énoncés plus
généraux. Et il sera toujours possible de relier ces énoncés entre eux par les connecteurs déjà
connus.
L’inégalité (x < 10), où x est un nombre entier, peut s’écrire à l’aide d’un prédicat binaire
Q qui exprime l’idée être strictement inférieur à : Q(x, 10). On peut ensuite construire des
énoncés complexes, en combinant de tels prédicats à l’aide des connecteurs logiques. Ainsi
on peut traduire la propriété selon laquelle un entier x vérifie 2 ≤ x < 6 par une expression
de la forme ¬Q(x, 2) ∧Q(x, 6). En ce sens, la logique du premier ordre, étend donc le champ
de la logique des propositions en enrichissant son discours.
Elle va même plus loin, en introduisant deux quantificateurs universel ∀ et existentiel ∃, qui de
manières différentes donnent leur sens à des objets indéterminés comme le « x » de l’énoncé

3

précédent. Par exemple, comment exprimer sous forme logique la déduction suivante ?

Tous les hommes sont mortels.
Socrate est un homme.
Donc Socrate est mortel.

La logique des propositions en est incapable, du fait de la présence dans ces phrases de
prédicats. La phrase Tous les hommes sont mortels affecte l’attribut mortels au sujet les
hommes, par l’intermédiaire du verbe être. Ce sont alors les groupes situés en position de
sujet et d’attribut qui sont les nouveaux atomes de nos phrases, et doivent être combinés pour
former des propositions élémentaires. On dit que la phrase a une structure prédicative. En
outre, certaines de ces expressions possèdent un caractère quantitatif exprimé par Tous les
. . . ou encore par Il existe un Les quantificateurs vont permettre l’écriture de ces énoncés
qui dépendent d’éléments variables. Ainsi, en désignant par M le prédicat être mortel et par
H le prédicat être un homme, ces phrases peuvent se représenter par M(Tous les hommes),
par H(Socrate) et par M(Socrate), de sorte que le raisonnement s’exprime par une formule
logique :

(M(Tous les hommes) ∧H(Socrate)) → M(Socrate)

On peut aller un peu plus loin dans la formalisation en décomposant le prédicatM(Tous les hommes),
pour qu’il ne s’applique plus qu’à un individu et non toute une population. AlorsM(Tous les hommes)
se ré-écrit ∀homme.M(homme), qu’on lit « pour tout homme, cet homme est mortel », et
qu’il faut comprendre comme « tout homme que l’on puisse considérer, est mortel ». On ter-
mine la construction en reliant ∀homme au prédicat H qui justement caractérise les hommes,
et on obtient :

(∀x. (H(x) → M(x)) ∧H(s)) → M(s)

où x et s sont des variables, au sens général du terme, et où s peut être instancié, par exemple,
par Socrate.
On introduit quelques aspects de la logique en lien avec quelques problèmes informatiques.
On develope la syntaxe des logiques propositionnelle et du premier ordre, puis la sémantique
de la logique propositionnelle qui mène naturellement au problème « SAT » de la résolution
d’une formule. Enfin, la déduction naturelle formalise la notion de démonstration.

1 Logique propositionnelle

1.1 Variable et formule propositionnelles

La logique propositionnelle étudie les propriétés d’énoncés complexes construits à partir
d’énoncés élémentaires qui ne peuvent être que vrais ou faux. Son objectif est de donner un
sens, appelé valeur de vérité, à ces énoncés complexes sous réserve qu’ils soient bien écrits.
Il convient donc, dans un premier temps, de préciser les règles qui régissent la construction
d’énoncés syntaxiquement corrects pour, dans un second temps, étudier leur sémantique.

Variable propositionnelle

Une variable propositionnelle (ou proposition atomique) est une assertion qui ne peut
prendre que deux états possibles appelés valeurs de vérité.

4

On note V l’ensemble des variables propositionnelles, désignées par une lettre minuscule :
x, y, z.
Deux symboles ⊤ et ⊥, appelés constantes logiques, désignent respectivement une proposition
toujours vraie et une proposition toujours fausse. Ils forment, avec les variables proposition-
nelles, les briques élémentaires des énoncés logiques. Les formules logiques sont construites
inductivement, en prenant comme objets de base les variables propositionnelles et les deux
constantes ⊤ et ⊥, et en les combinant par des connecteurs logiques.

Formule logique

Soit la signature contenant :
— les constantes ⊤, ⊥ et l’ensemble des variables propositionnelles V ;
— un constructeur unaire not représentant la négation ;
— trois constructeurs binaires and, or, imp représentant le et, le ou et l’implication.

Une formule logique est un terme sur cette signature.

Si x et y sont deux variables propositionnelles, les expressions suivantes sont des formules
logiques :

and(x, y) or(x,⊥) and(not(x), y) imp(x, or(⊤, y))

1.1.1 OCaml

Une telle définition mène très naturellement à la définition d’un type de données récursif
dans un langage comme OCaml. Il suffit pour cela d’introduire un constructeur pour chaque
forme possible d’énoncé logique. Un fragment pourrait en être :

type fmla =
| True
| ...
| And of fmla * fmla
| Or of fmla * fmla
| Imp of fmla * fmla

Pour limiter les redondances dans les définitions et le code, nous allons légèrement modifier
ce schéma général en regroupant tous les connecteurs binaires sous une même construction.
Le programme suivant définit ainsi deux types : un type binop qui est l’énumération des trois
connecteurs binaires, et un type fmla pour les formules elles-mêmes.

type binop = And | Or | Imp

type fmla =
| True
| False
| Var of int (* dans 1..n *)
| Not of fmla
| Bin of binop * fmla * fmla

La formule logique

φ = and(or(imp(x, y), and(not(x), y)), or(x, not(y)))

5

peut ainsi se définir comme suit :

let x = Var 1 and y = Var 2
let f0 = Bin (Imp, x, y)
let f1 = Bin (And, Not x, y)
let f2 = Bin (Or, x, Not y)
let phi = Bin (And, Bin (Or, f0, f1), f2)

Pour manipuler les formules logiques, le constructeur Var est suivi d’un entier naturel non nul.
CCe choix n’est pas arbitraire : il est motivé par l’usage des SAT-solvers, programmes destinés
à résoudre automatiquement le problème de satisfiabilité propositionnelle (SAT). Ces solveurs
manipulent des formules sous forme normale conjonctive (CNF) et utilisent généralement le
format standard DIMACS, dans lequel chaque variable propositionnelle est représentée par un
entier naturel non nul, et sa négation par l’entier opposé. Cette représentation permet une
manipulation algorithmique efficace des formules logiques. En adoptant cette convention,
pour nos besoins, il peut être utile de déterminer l’ensemble des variables. Le programme
suivant renvoie le plus grand entier associé à une variable propositionnelle d’une formule.

let varmax f =
let rec varmax m = function

| True | False -> m
| Var i -> max i m
| Not f -> varmax m f
| Bin (_, f1, f2) -> varmax (varmax m f1) f2

in
varmax 0 f

Arbre de syntaxe abstraite. Le type OCaml fmla est ce qu’on appelle un arbre de
syntaxe abstraite d’une formule logique. Il s’agit d’un arbre fini non vide dont les feuilles sont
des variables propositionnelles et les nœuds de l’arbre portent les connecteurs logiques.

— Pour toute formule φ, l’arbre de syntaxe abstraite associé à not(φ) a une racine éti-
quetée par not et un unique enfant qui est l’arbre de syntaxe abstraite associé à φ.

— Pour toutes formules φ et ψ et tout connecteur binaire c ∈ {and, or, imp}, l’arbre de
syntaxe abstraite associé à c(φ, ψ) a une racine étiquetée par c, un sous-arbre gauche
associé à φ et un sous-arbre droit associé à ψ.

Considérons la formule logique φ définie plus haut par :

and(or(imp(x, y), and(not(x), y)), or(x, not(y)))

Son arbre de syntaxe abstraite est le suivant.

6

and

or

imp

x y

and

not

x

y

or

x not

y

Notons que chaque sous-arbre définit une formule appelée sous-formule de la formule initiale.
Les sous-formules associées sont :

or(imp(x, y), and(not(x), y)), or(x, not(y)), not(y)

À chaque formule logique φ, on peut associer deux entiers, sa taille |φ| et sa hauteur h(φ), qui
permettent de mener des raisonnements par induction et de prouver par récurrence certaines
propriétés de la formule.

Taille d’une formule

La taille d’une formule φ, notée |φ|, est définie inductivement par :

|⊤| = 0
|⊥| = 0
|x| = 0 (x variable propositionnelle)

|not(φ)| = 1 + |φ|
|c(φ, ψ)| = 1 + |φ| + |ψ|

où c est un connecteur binaire.

On peut remarquer que la taille d’une formule est aussi le nombre de connecteurs qu’elle
contient.

Hauteur d’une formule

La hauteur d’une formule φ, notée h(φ), est définie inductivement par :

h(⊤) = 0
h(⊥) = 0
h(x) = 0 (x variable propositionnelle)

h(not(φ)) = 1 + h(φ) (φ formule logique)
h(c(φ, ψ)) = 1 + max(h(φ), h(ψ))

où φ et ψ sont des formules logiques et c un connecteur binaire.

7

Formule linéaire. Il existe une écriture linéaire des formules logiques à l’aide des variables
propositionnelles, des connecteurs et de parenthèses, qui est un peu plus légère à manipuler
que la notation stricte à base de constructeurs. Dans cette représentation, les connecteurs
sont représentés par les symboles :

— ¬ pour le constructeur not ;
— ∧, ∨, → pour les constructeurs and, or, imp.

Alors que les constructeurs binaires sont utilisés comme des opérateurs préfixes, leurs symboles
équivalents précédents sont utilisés de manière infixe.
Ainsi, la formule φ définie plus haut par :

and(or(imp(x, y), and(not(x), y)), or(x, not(y)))

peut être représentée par la formule linéaire suivante :

(((x → y) ∨ (¬x ∧ y)) ∧ (x ∨ ¬y))

Une définition alternative mais équivalente d’une formule logique serait alors la suivante.
— ⊤ et ⊥ sont des formules logiques.
— Toute variable propositionnelle est une formule logique.
— Si φ est une formule logique alors ¬φ est une formule logique.
— Si φ et ψ sont des formules logiques alors pour tout connecteur binaire ⋄, (φ ⋄ ψ) est

une formule logique.
La première forme introduite pour les formules pouvait déjà être qualifiée de linéaire dans
le sens où elle était écrite sur une ligne ! Mais elle n’est en réalité rien d’autre qu’un arbre.
Le qualificatif est donc préféré pour désigner une formule mise sous la forme précédente qui
n’est pas naturellement un arbre.
Si φ et ψ sont deux formules logiques, on a les notations suivantes.

Terme Notation usuelle
not(φ) ¬φ

and(φ, ψ) (φ ∧ ψ)
or(φ, ψ) (φ ∨ ψ)
imp(φ, ψ) (φ → ψ)

Sous cette forme, les parenthèses jouent un rôle essentiel pour fixer les priorités des opéra-
tions. Si certaines peuvent sembler superflues, pour des expressions plus complexes, elles sont
indispensables pour éviter toute ambiguïté. Par exemple, comment lire l’expression x∧y∨z ?
Les expressions (x∧ y) ∨ z et x∧ (y ∨ z) sont non ambiguës. Et en toute rigueur, pour coller
parfaitement à la définition précédente d’une formule linéaire, il conviendrait d’ajouter un
couple de parenthèses pour l’ensemble de l’expression.
Ce qui mènerait à l’écriture de formules strictes.

((x ∧ y) ∨ z) (x ∧ (y ∨ z))

En pratique, ces parenthèses externes peuvent être omises sans que cela ne nuise à la syntaxe
de la formule. Ainsi, les expressions (x ↔ (¬z ∨ y)) et x ↔ (¬z ∨ y) sont syntaxiquement
correctes. Elles comportent toutes les parenthèses indispensables. Notons que le connecteur
unaire ¬ ne requiert pas nécessairement l’usage de parenthèses.

8

En revanche, les expressions x ∨ y, (x ∨ y), (x ∨ y(etx ∨ y)), syntaxiquement incorrectes, ne
sont pas des formules logiques.
Dans cette représentation, une sous-formule est une suite de symboles qui est encore une
formule, c’est-à-dire une formule linéaire syntaxiquement correcte.
Par exemple, (x → y), (¬x ∧ y), (x ∨ ¬y), ((x → y) ∨ (¬x ∧ y)) sont des sous-formules de la
formule (((x → y) ∨ (¬x ∧ y)) ∧ (x ∨ ¬y)).
Toute formule logique se décompose de manière unique en sous-formules. L’unicité de cette
décomposition implique qu’on peut identifier une formule et son arbre de syntaxe abstraite,
et une sous-formule et un sous-arbre de syntaxe abstraite de l’arbre de syntaxe abstraite. Ce
résultat constitue le théorème de lecture unique des formules.

Theoreme de lecture unique des formules strictes

Toute écriture d’une formule stricte φ a exactement l’une des formes suivantes.
— φ est une variable propositionnelle.
— φ = ¬ψ où ψ est une formule.
— φ = (ψ1 ⋄ ψ2) où ψ1 et ψ2 sont des formules, ⋄ est un connecteur binaire.

Dans ces deux derniers cas, il y a unicité des formules ψ, ψ1 et ψ2.

Règles de priorités Pour alléger l’écriture des formules logiques, certaines parenthèses,
voire toutes, peuvent être supprimées sans générer d’ambiguïté de lecture de la formule si
certaines règles de priorités sont adoptées, comparables aux règles de priorités usuelles de
l’arithmétique.

— Le connecteur ¬ est prioritaire sur tous les autres connecteurs.
— Puis, dans l’ordre des priorités décroissantes, on a

— ∧,
— ∨ ;
— →

Exemple

Par exemple, la formule ((x ∧ y) ∨ z) peut s’écrire x ∧ y ∨ z, sans ambiguïté de
lecture. Toutefois, la présence des parenthèses internes donne plus de lisibilité à
la formule. Un bon compromis est donc (x ∧ y) ∨ z.

— Quand plusieurs mêmes connecteurs se suivent, celui situé le plus à gauche est prio-
ritaire. On parle d’associativité à gauche. Cette règle admet une exception pour le
connecteur d’implication →, pour lequel l’associativité est à droite.

Exemple

La formule x → y → z se lit (x → (y → z)), alors que la formule x ∧ y ∧ z se lit
((x ∧ y) ∧ z).

9

1.2 Sémantique

En linguistique, la syntaxe désigne le signifiant d’un énoncé. La sémantique désigne son
signifié. Il existe entre la syntaxe et la sémantique le même rapport qu’entre la forme et le
fond. La syntaxe est le support de la sémantique.
En logique propositionnelle, la sémantique s’attache à définir la valeur de vérité d’une formule
syntaxiquement correcte, à savoir son caractère vrai ou faux. Pour ce faire, il convient :

— d’attribuer une valeur de vérité à chaque variable propositionnelle ;
— de définir les règles d’interprétation d’un connecteur ;
— de déterminer la valeur de vérité de la formule.

1.3 Valuation

On appelle ensemble des booléens B l’ensemble {F, V }. D’autres notations sont possibles pour
désigner les valeurs de cet ensemble, comme 0 pour faux et 1 pour vrai, ou encore false et
true.

Valuation

On appelle valuation (ou environnement, ou distribution de vérité, ou contexte) toute
fonction v : V → B. Une valuation est donc un choix de valeurs de vérité attribuées à
chacune des variables propositionnelles d’une formule.

Choisir une valuation v associée à un triplet de variables (x, y, z), c’est par exemple imposer :
v(x) = F v(y) = V v(z) = F

On voit que, pour un tel triplet, 23 valuations peuvent être définies. De manière générale, si
une formule comporte n variables propositionnelles, il existe 2n choix de valuations possibles.
Comme nous le verrons par la suite, ce résultat revêt une grande importance.
La connaissance d’une valuation des variables propositionnelles d’une formule permet de dé-
terminer la valeur de vérité de cette dernière. Comme elle est construite à l’aide de connecteurs
logiques, il convient tout d’abord de préciser les règles d’interprétation de ces derniers.

Fonction booléenne
On appelle fonction booléenne à n arguments toute fonction de Bn dans B. Ainsi, à
chaque connecteur peut être associée une fonction booléenne qui exprime la valeur de
vérité d’une formule connaissant celle de ses sous-formules.

— La fonction f¬ : B → B est définie par :

f¬(F) = V f¬(V) = F

— La fonction f∧ : B2 → B est définie par :

f∧(x, y) =

V si et seulement si x = V et y = V

F sinon

— La fonction f∨ : B2 → B est définie par :

f∨(x, y) =

F si et seulement si x = F et y = F

V sinon

10

— La fonction f→ : B2 → B est définie par :

f→(x, y) =

F si et seulement si x = V et y = F

V sinon

— La fonction f↔ : B2 → B est définie par :

f↔(x, y) =

F si et seulement si x ̸= y

V sinon

Ces résultats peuvent être exprimés sous la forme de tableaux appelés tables de vérité. Chaque
ligne du tableau correspond à l’une des valuations, et est constituée : de la valeur donnée
par la valuation à chaque variable propositionnelle argument d’une fonction booléenne, et la
valeur de vérité correspondant au résultat de la fonction. Voici les tables de vérité associées
aux fonctions d’interprétation des connecteurs logiques.

p f¬(p)
F V
V F

x y f∨(x, y) f∧(x, y) f→(x, y) f↔(x, y)
F F F F V V
F V V F V F
V F V F F F
V V V V V V

1.4 Valeur d’une formule

La valeur de vérité d’une formule peut être définie inductivement à partir de celle de ses
variables propositionnelles et des fonctions booléennes précédentes.

Valeur d’une formule
Soit V un ensemble de variables propositionnelles et F l’ensemble des formules logiques
qu’il est possible de construire sur V . Pour toute valuation v, la fonction d’évaluation
d’une formule J.Kv : F → B se définit par induction structurelle :

JxKv = v(x)
J¬φKv = f¬(JφKv) (φ formule logique)

Jφ ⋄ ψKv = f⋄(JφKv, JψKv)

où φ et ψ sont des formules logiques et ⋄ un connecteur binaire.

Notation abrégée de la fonction d’évaluation Pour toute formule φ et toute valuation
v, on s’autorise donc à écrire v(φ) pour désigner JφKv.
Étant donnée une valuation v sur les variables propositionnelles d’une formule φ, la valeur
de v(φ) ne dépend que de la valeur de v en les variables propositionnelles ayant occurrence

11

dans φ. Si les variables propositionnelles intervenant dans φ sont x1, x2, . . . , xn, il suffit de
considérer les valuations restreintes à {x1, x2, . . . , xn} pour connaître toutes celles de φ.

Exemple

Reprenons la formule φ définie plus haut.

(((x → y) ∨ (¬x ∧ y)) ∧ (x ∨ ¬y))

Adoptons une valuation v définie par v(x) = F , v(y) = F . Alors :

v(φ) = v((((x → y) ∨ (¬x ∧ y)) ∧ (x ∨ ¬y)))
= f∧

(
v(((x → y) ∨ (¬x ∧ y))), v(x ∨ ¬y)

)
= f∧

(
f∨(v(x → y), v(¬x ∧ y)), f∨(v(x), v(¬y))

)
= f∧

(
f∨(f→(v(x), v(y)), f∧(v(¬x), v(y))), f∨(v(x), f¬(v(y)))

)
= f∧

(
f∨(f→(F, F), f∧(f¬(F), F)), f∨(F, f¬(F))

)
= f∧

(
f∨(V, f∧(V, F)), f∨(F, V)

)
= f∧

(
f∨(V, F), V

)
= f∧(V, V)
= V

Comme nous l’avons déjà évoqué plus haut, pour toute formule comportant n variables
propositionnelles, il existe exactement 2n valuations.
Toutes ces valuations peuvent être présentées dans la table de vérité de φ comportant 2n
lignes.
Sur chacune de ses lignes sont portées les valuations attribuées à chaque variable proposi-
tionnelle, puis celle de chaque sous-formule, et enfin celle de la formule en dernière colonne.
Pour alléger les écritures, on omet généralement la notation ().

Exemple

Toujours avec la même formule φ,

(((x → y) ∨ (¬x ∧ y)) ∧ (x ∨ ¬y))

la table de vérité est la suivante.

x y x → y ¬x ∧ y (x → y) ∨ (¬x ∧ y) x ∨ ¬y φ
F F V F V V V
F V V V V F F
V F F F F V F
V V V F V V V

12

En OCaml, l’évaluation d’une formule peut se faire à l’aide d’une fonction eval à deux
arguments. Le premier argument est un tableau de booléens qui associe une valeur de vérité
à chaque variable propositionnelle. La case 0 du tableau est inutilisée de sorte que les variables
sont identifiées par des entiers naturels non nuls commençant à 1. Le second argument de la
fonction est une formule dont le type est celui du programme 10.1.

let rec eval v f = match f with
| True -> true
| False -> false
| Var i -> assert (1 <= i && i < Array.length v); v.(i)
| Not f -> not (eval v f)
| Bin (And, f1, f2) -> eval v f1 && eval v f2
| Bin (Or, f1, f2) -> eval v f1 || eval v f2
| Bin (Imp, f1, f2) -> not (eval v f1) || eval v f2

1.5 Modèle d’une formule.

Parmi les valuations d’une formule logique φ, on distingue celles pour lesquelles la formule
est vraie et celles pour lesquelles elle est fausse.
Une valuation qui rend vraie une formule est appelée un modèle pour cette formule. On peut
alors définir un ensemble de toutes les valuations qui rendent une formule vraie. L’ensemble
des modèles d’une formule porte autant d’informations que sa table de vérité.

Modèle

Étant donnée une formule φ, un modèle de cette formule est une valuation v qui rend
vraie φ. On note Mv un tel modèle.

La notation v |= φ est parfois adoptée pour signifier que v est un modèle de φ.
On la lit également : φ est satisfaite par la valuation v.

Satisfiabilité d’une formule
Une formule φ est dite satisfiable s’il existe une valuation qui la rend vraie, c’est-à-dire
s’il existe une valuation v telle que v |= φ.

La notion de satisfiabilité est fondamentale en logique. Savoir si une formule est satisfiable
constitue le cœur du problème SAT. Ainsi, l’ensemble des modèles d’une formule φ n’est autre
que l’ensemble des valuations qui satisfont la formule. On peut noter cet ensemble Mod(φ).

Si V est l’ensemble des variables propositionnelles sur lequel est défini φ, on peut écrire :

Mod(φ) = {Mv | v ∈ BV}

ou encore :
Mod(φ) = {v ∈ BV | v |= φ}

13

Tautologie et antilogie

Une formule logique φ satisfaite pour toute valuation de ses variables propositionnelles
est appelée une tautologie. On dit également que la formule est valide. On note |= φ. Si
aucune valuation ne satisfait une formule, cette dernière est appelée antilogie, et on la
dit aussi contradictoire.

Exemple

Pour toute variable propositionnelle x, la formule x∨¬x est une tautologie. En revanche,
la formule x ∧ ¬x est une antilogie.

x x ∨ ¬x x ∧ ¬x
F V F
V V F

De cette définition, il découle immédiatement que φ est une tautologie si et seulement si ¬φ
est une antilogie. En effet, si on note Val l’ensemble de toutes les valuations possibles sur
l’ensemble des variables propositionnelles V , φ est une tautologie si et seulement si Mod(φ) =
Val. Cette égalité équivaut à Val \ Mod(φ) = ∅.
En remarquant que Mod(¬φ) = Val \ Mod(φ), on a finalement Mod(¬φ) = ∅, c’est-à-dire
que ¬φ est insatisfiable (antilogie).

1.6 Conséquence logique

La notion de conséquence peut prendre plusieurs sens, exprimés par les symboles →, ⊨ et ⇒.
Pour clarifier ces notations, considérons la phrase : « S’il pleut, je prends mon parapluie. ».
Notons x la proposition il pleut et y la proposition je prends mon parapluie, et posons φ =
(x → y).
Dans le langage usuel, cette formule est interprétée comme affirmant que, s’il est établi qu’il
pleut, alors il est vrai que je prends mon parapluie. Cependant, cette interprétation dépasse
ce que signifie réellement la formule φ. Cette dernière relève seulement de ce qu’on pourrait
appeler le langage-objet, langage dénué de toute sémantique. Dit autrement, on ne sait rien
des valeurs de vérité de x et de y. La formule φ est seulement une expression qui définit une
relation de conséquence matérielle.
La conséquence sémantique est à rapprocher de l’interprétation précédente de la phrase. On
la note x ⊨ y, relation qui se peut traduire par : S’il est vrai qu’il pleuve alors il s’ensuit
qu’il est vrai que je prenne mon parapluie. Cette relation relève du métalangage et non du
langage-objet.
Le symbole ⇒ s’inscrit également dans ce cadre méta-linguistique : il indique que, si la
formule φ est vraie, on peut écrire x ⇒ y.
De manière générale, lorsqu’une formule logique ψ est vraie chaque fois qu’une autre formule
φ l’est, on dit que ψ est une conséquence sémantique de φ. Cette notion s’étend naturellement
à un ensemble de formules Γ : si toute valuation qui satisfait toutes les formules de Γ satisfait
également ψ, alors ψ est conséquence sémantique de Γ. Dans ces deux cas, on utilise la
notation ⊨.

14

Conséquence sémantique

Une formule ψ est conséquence sémantique d’une formule φ si pour toute valuation v
telle que v(φ) = V , alors v(ψ) = V . On note : φ ⊨ ψ.
Une formule ψ est conséquence sémantique d’un ensemble de formules Γ quand, pour
toute valuation v, si v est telle que toute formule φ ∈ Γ vérifie v(φ) = V , alors v(ψ) = V .
On note : Γ ⊨ ψ.

Exemple

Illustrons la conséquence sémantique avec l’ensemble Γ = {x, y} contenant deux for-
mules réduites à des variables propositionnelles.
Il est clair que Γ ⊨ (x∧y). Toute valuation qui satisfait x et y satisfait leur conjonction.
On pourrait également écrire Γ ⊨ (x∨ y) même si la satisfiabilité de toutes les variables
propositionnelles de Γ est une condition trop forte.
On a aussi x ⊨ (x ∨ y) et y ⊨ (x ∨ y).
Si à présent, on prend Γ = {(x → y), (y → z)}, on a Γ ⊨ (x → z).
En effet, une valuation v qui satisfait (x → y) vérifie v(x) = F ou v(y) = V .
En outre, une telle valuation satisfait (y → z) et donc vérifie v(y) = F ou v(z) = V .
Deux choix sont possibles pour la valeur de vérité de y.
Si v(y) = V , alors nécessairement v(z) = V . Si v(y) = F alors nécessairement v(x) = F .
Dans les deux cas, on obtient v((x → z)) = V . Ce qui établit le résultat.

1.7 Équivalence sémantique

Quand deux formules logiques syntaxiquement différentes ont la même table de vérité, elles
partagent la même sémantique. De fait, elles sont sémantiquement indiscernables bien que
syntaxiquement discernables.

Équivalence sémantique

Deux formules φ et ψ sont dites équivalentes si pour toute distribution de vérité v, on
a v(φ) = v(ψ). On note alors φ ≡ ψ.

L’équivalence sémantique ne doit pas être confondue avec l’équivalence matérielle ↔. Alors
que (φ ↔ ψ) est une formule, φ ≡ ψ n’en est pas une. Cette dernière est seulement un
jugement porté sur les formules φ et ψ qui exprime que d’un point de vue sémantique, elles
sont indiscernables.
On peut néanmoins remarquer que deux formules satisfont φ ≡ ψ, si et seulement si (φ ↔ ψ)
est une tautologie, puisque pour toute valuation v telle que v(φ) = v(ψ), on a φ ≡ ψ,
et réciproquement par définition de l’équivalence sémantique. La table de vérité ci-dessous
prouve que :

(φ ↔ ψ) ≡ (φ → ψ) ∧ (ψ → φ)

φ ψ φ → ψ ψ → φ (φ → ψ) ∧ (ψ → φ) φ ↔ ψ
F F V V V V
F V V F F F
V F F V F F
V V V V V V

15

Équivalences sémantiques propositionnelles

Les lois de De Morgan, sont des équivalences sémantiques liant la conjonction à la
négation d’une disjonction, et inversement.

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ (de Morgan)

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ (de Morgan)

L’implication peut se décomposer en une disjonction et une négation. Elle est inversée
par négation, et a également une interaction avec la conjonction.

φ → ψ ≡ ¬φ ∨ ψ (implication)

φ → ψ ≡ ¬ψ → ¬φ (contraposition)

(φ ∧ ψ) → θ ≡ φ → (ψ → θ) (currification)

Il semble raisonnable d’affirmer qu’une variable propositionnelle x et sa négation ¬x ne
puissent être toutes deux vraies. Ce résultat constitue le principe de non-contradiction.
En outre, si x est faux, alors ¬x est vrai, et donc nécessairement l’un parmi x et ¬x
doit être vrai (principe du tiers exclu).
On peut également vérifier que, si une négation inverse la signification d’une formule,
une deuxième négation rétablit la sémantique d’origine.

φ ∧ ¬φ ≡ ⊥ (non-contradiction)

φ ∨ ¬φ ≡ ⊤ (tiers exclu)

¬¬φ ≡ φ (double négation)

Enfin, on a les équivalences sémantiques suivantes dont la démonstration est laissée au
soin du lecteur.

φ ∧ ⊤ ≡ φ (élément neutre)

φ ∨ ⊥ ≡ φ (élément neutre)

φ ∧ ⊥ ≡ ⊥ (élément absorbant)

φ ∨ ⊤ ≡ ⊤ (élément absorbant)

φ ∧ ψ ≡ ψ ∧ φ (commutativité)

φ ∨ ψ ≡ ψ ∨ φ (commutativité)

(φ ∧ ψ) ∧ θ ≡ φ ∧ (ψ ∧ θ) (associativité)

(φ ∨ ψ) ∨ θ ≡ φ ∨ (ψ ∨ θ) (associativité)

φ ∧ (ψ ∨ θ) ≡ (φ ∧ ψ) ∨ (φ ∧ θ) (distributivité)

φ ∨ (ψ ∧ θ) ≡ (φ ∨ ψ) ∧ (φ ∨ θ) (distributivité)

16

1.8 Substitution

La substitution d’une variable propositionnelle x par une formule ψ dans une formule φ
consiste à remplacer chaque occurrence de x dans φ par ψ. On la note φ{x←ψ}. Par exemple,
si φ = (¬x ∨ y) ∧ (¬x ∨ z) alors :

φ{x←(x→y)} = (¬(x → y) ∨ y) ∧ (¬(x → y) ∨ z)

Substitution
On définit la substitution par induction. Dans ces équations, x dénote une variable
propositionnelle, et φ, φ1, φ2 et ψ des formules.

φ{x←ψ} = φ (si x n’est pas dans φ)

x{x←ψ} = ψ

(¬φ){x←ψ} = ¬(φ{x←ψ})

(φ1 ⋄ φ2){x←ψ} = φ
{x←ψ}
1 ⋄ φ{x←ψ}2 (⋄ connecteur binaire)

1.9 Formes normales

L’équivalence sémantique montre que des formules logiques peuvent avoir la même signifi-
cation tout en possédant des syntaxes différentes. Il est alors naturel de se demander s’il
existe une écriture normalisée permettant de représenter toutes les formules sous une forme
commune.
C’est précisément l’objectif des formes normales, qui imposent des structures syntaxiques
bien définies aux formules logiques.

Formes normales négatives

Considérons la formule
φ = (x ∧ ¬z) → (¬x ∧ ¬(y ∧ ¬z)).

En utilisant des équivalences sémantiques, on obtient successivement :

φ ≡ ¬(x ∧ ¬z) ∨ (¬x ∧ ¬(y ∧ ¬z)) (implication)
≡ (¬x ∨ ¬¬z) ∨ (¬x ∧ (¬y ∨ ¬¬z)) (de Morgan)
≡ (¬x ∨ z) ∨ (¬x ∧ (¬y ∨ z)) (double négation).

Dans cette écriture, la formule ne contient plus que des conjonctions, des disjonctions, des va-
riables propositionnelles et des négations de variables. Cette forme est appelée forme normale
négative.

Littéral
Un littéral est une variable propositionnelle ou la négation d’une variable proposition-
nelle.

17

Forme normale négative

Une forme normale négative (NNF) est une formule logique ne contenant que les connec-
teurs ¬, ∧ et ∨, et dans laquelle la négation ne s’applique qu’aux variables proposition-
nelles.

Toute formule logique peut être transformée en NNF. La construction repose sur les étapes
suivantes :

— éliminer les connecteurs → et ↔ au profit de ¬, ∧ et ∨ ;
— propager les négations à l’aide des lois de de Morgan ;
— supprimer les doubles négations.

Formes normales conjonctives

La NNF constitue une première normalisation. On peut aller plus loin en regroupant les
littéraux en disjonctions, elles-mêmes combinées par des conjonctions. On obtient alors une
forme normale conjonctive.

Clause disjonctive

Une clause disjonctive est une disjonction de littéraux.

Forme normale conjonctive

Une forme normale conjonctive (CNF) est une conjonction de clauses disjonctives.

À partir de la NNF précédente, on obtient une CNF par distributivité :
φ ≡ (¬x ∨ z) ∨ (¬x ∧ (¬y ∨ z))

≡ ((¬x ∨ z) ∨ ¬x) ∧ ((¬x ∨ z) ∨ (¬y ∨ z))
≡ (¬x ∨ z) ∧ (¬x ∨ ¬y ∨ z).

Formes normales disjonctives

Une formule peut également être écrite sous forme normale disjonctive.

Clause conjonctive

Une clause conjonctive est une conjonction de littéraux.

Forme normale disjonctive

Une forme normale disjonctive (DNF) est une disjonction de clauses conjonctives.

La CNF précédente peut être transformée en DNF par distributivité :
φ ≡ (¬x ∨ z) ∧ (¬x ∨ ¬y ∨ z)

≡ (¬x) ∨ (¬x ∧ ¬y) ∨ (¬x ∧ z) ∨ (¬y ∧ z) ∨ (z).

Une autre méthode de construction de la DNF repose sur la table de vérité. Chaque ligne
pour laquelle la formule est vraie fournit une clause conjonctive correspondant à la valuation
considérée.

18

Pour la formule
(x ∧ ¬z) → (¬x ∧ ¬(y ∧ ¬z)),

la table de vérité permet d’obtenir la DNF suivante :

φ = (¬x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ ¬z)
∨ (¬x ∧ y ∧ z) ∨ (x ∧ ¬y ∧ z) ∨ (x ∧ y ∧ z).

On constate que les formes CNF et DNF peuvent entraîner une croissance importante du
nombre de termes, parfois exponentielle en fonction du nombre de variables. Par exemple,
une DNF comportant n clauses conjonctives à deux littéraux se transforme en une CNF à 2n
clauses :

(ℓ1 ∧ ℓ′1) ∨ · · · ∨ (ℓn ∧ ℓ′n) ≡
∧

εi∈{ℓi,ℓ′i}
(ε1 ∨ · · · ∨ εn).

Représentation des formes normales en OCaml

En OCaml, une CNF ou une DNF est naturellement représentée par une liste de clauses,
chaque clause étant une liste de littéraux. Un littéral est codé par un entier naturel non nul
pour une variable propositionnelle, et par un entier négatif pour sa négation.
Une clause est une liste de littéraux sans doublons, éventuellement triée par valeur absolue
croissante. Une forme normale est enfin décrite par un enregistrement indiquant son type
(CNF ou DNF), le nombre de variables et la liste des clauses.
type literal = int type clause = literal list type kind = CNF | DNF type nf = kind : kind ;
nbvars : int ; clauses : clause list

