Informatique Cours
Complexité Ipesup

Objectifs

— analyser la complexité temporelle et spatiale d’un algorithme ;

— distinguer et calculer complexité dans le pire cas, en moyenne et amortie ;
— résoudre des équations de complexité issues d’algorithmes récursifs ;

— comprendre les compromis espace/temps et leurs implications pratiques.

Diftérents algorithmes pouvaient avoir des performances treés différentes; méme si les deux
algorithmes résolvent le méme probleme! La complexité est I'étude des performances des
algorithmes. On ’aborde selon deux criteres principaux.

— La complexité temporelle : temps de calcul nécessaire a ’exécution de ’algorithme.
— La complexité spatiale : espace mémoire utilisé pour les données de travail de 1'algo-
rithme.

1 Complexité temporelle

En général, les performances d’un algorithme dépendent étroitement des entrées considérées.
Définition
La complexité temporelle d'une exécution sur une entrée donnée correspond au nombre
d’opérations atomiques effectuées.

1.1 Complexité en fonction de la taille de I’entrée.

On exprime classiquement la complexité en fonction de la taille des entrées. Ainsi, pour un
algorithme opérant sur un tableau de N entiers, le temps de calcul et ’espace mémoire sont
exprimés en fonction de V.

Considérons un algorithme déterminant si deux tableaux a; et ao, de tailles respectives
N7 et Ny, possedent un élément commun : chaque élément de a; est comparé successive-
ment a tous les éléments de as jusqu’a détection d'un élément commun ou épuisement
des comparaisons possibles.

1 |bool intersect(int ail[], int nil, int a2[], int n2) {
2 for (int i1 = 0; i1l < n1; il++) {

3 for (int i2 = 0; i2 < n2; i2++) {

4 if (a1[il] == a2[i2]) { return true; }

5 }

6 }

7 return false;

s |}

Les comparaisons sont effectuées uniquement dans le test if (ai1[il] == a2[i2]),
placé dans deux boucles imbriquées. En ’absence d’interruption par un return true, la
boucle interne réalise Ny comparaisons a chaque itération de la boucle externe, exécutée
)
N fois, soit un total de N; X Ny comparaisons lorsque les tableaux n’ont aucun élément
)
commun. A l'inverse, si un élément commun existe, I’exécution s’interrompt apreés un
nombre de comparaisons dépendant de sa position, compris entre 1 et N; X Ns.

1.2 Pire cas, meilleur cas, complexité moyenne

On obtient ainsi un encadrement du nombre C' de comparaisons en fonction des tailles N; et
N, des tableaux d’entrée :
1< C < N1 X NQ.

Toutes les valeurs intermédiaires étant possibles, la complexité d’une exécution donnée ne
dépend pas uniquement de la taille des entrées. On introduit donc trois notions servant de
reperes pour caractériser la complexité d'un algorithme.

Définition
Pour une taille d’entrée donnée, on distingue :
— le pire cas, correspondant a la complexité maximale possible;
— le meilleur cas, correspondant a la complexité minimale possible ;

— le cas moyen, défini comme la moyenne des complexités sur ’ensemble des
entrées possibles de cette taille.

Dans le cas de la version simple de intersect, le pire cas est N; x Ny, lorsque les tableaux
n’ont aucun élément commun ou lorsque 'unique élément commun apparait en derniere posi-
tion dans chacun d’eux, tandis que le meilleur cas est 1, lorsque les deux tableaux commencent
par le méme élément.

La complexité moyenne ne se déduit pas directement : elle dépend de la distribution des
valeurs possibles dans les tableaux. Si le nombre de valeurs distinctes est tres grand devant
Ni et Ns, la probabilité d'un élément commun est faible et la complexité moyenne est proche
du pire cas Ny x Ny. A Dinverse, si les valeurs possibles sont peu nombreuses, la présence
d’un élément commun devient probable, ce qui réduit la complexité moyenne.

1.3 Profils de complexité.

Complexité | Appellation Cas typique

1 constante opération de base
log(N) logarithmique dichotomie
N linéaire boucle simple, recherche séquentielle
Nlog(N) | linéarithmique diviser pour régner, tri fusion

N2 quadratique deux boucles imbriquées, tri par insertion
N3 cubique trois boucles imbriquées, produit de matrices
2N exponentielle recherche exhaustive

Les complexités N2 et N2 sont des cas particuliers de complexité polynomiale, ¢’est-a-dire de
la forme N*.

1.4 Ordres de grandeur.

Dans 'analyse de la complexité d’un algorithme, on s’intéresse principalement a la complexité
asymptotique, qui décrit I’évolution de la complexité pour de grandes valeurs de N. On cherche
généralement non pas une expression exacte, mais une indication de l'ordre de grandeur.

Les notations de Landau fournissent des outils pour formaliser ces ordres de grandeur.
Notations de Landau

Etant donnée une fonction f : N — N, on a les notations suivantes.

— O(f(n)) désigne les fonctions majorées par f, a un facteur constant pres. On note
g(n) = O(f(n)) ¢l existe un facteur & € R* et un rang ng € N tels que pour
tout n > ng, on a g(n) < kf(n).

— Q(f(n)) désigne les fonctions minorées par f, a un facteur constant pres. On note
g(n) = Q(f(n)) s'il existe un facteur £ € R et un rang ny € N tels que pour
tout n > ng, on a kf(n) < g(n).

— O(f(n)) désigne les fonctions du méme ordre de grandeur que f. On note g(n) =
O(f(n)) ¢'il existe deux facteurs ki, ks € RT et un rang ny € N tels que pour
tout n > ng, on a ki f(n) < g(n) < kof(n).

— ~ f(n) désigne les fonctions équivalentes a f. On note g(n) ~ f(n) si

lim,, o % =1.

Les définitions des notations de Landau permettent de déduire directement des regles de
combinaison, notamment pour les ordres de grandeur ©.

Reégles de calcul sur les ordres de grandeur

L’ordre de grandeur d’un produit est le produit des ordres de grandeur, a une constante
pres.

— Si C(n) =©(f(n)), alors kC(n) = ©(f(n)).

— i C(n) = O(f(n)) et D(n) = O(g(n)), alors C(n)D(n) = O(f(n)g(n).
L’ordre de grandeur d’une somme est celui du terme dominant.

— Si C(n) = O(D(n)), alors C'(n) + D(n) = 6(D(n)).

Que compter ? Le temps d’exécution d'un programme dépend des opérations réali-
sées, dont les cofits élémentaires (arithmétique, tests, accés mémoire, etc.) ne sont pas
nécessairement comparables.
Un décompte exhaustif de toutes les opérations est a la fois difficile et peu pertinent, car
il reviendrait a additionner des cotits hétérogenes. Le raisonnement en termes d’ordres
de grandeur, via les notations O ou O, est volontairement imprécis : il décrit des vitesses
de croissance sans fournir de valeur exacte pour une taille donnée, mais constitue sou-
vent I'analyse la plus pertinente en I'absence d’hypotheses sur la machine d’exécution.
Pour des estimations plus fines, on peut utiliser la notation d’équivalence ~, qui impose
de préciser les constantes multiplicatives. Dans ce cadre, on ne comptabilise pas toutes
les opérations, mais seulement celles jugées représentatives du temps d’exécution réel.
Pour les programmes manipulant des tableaux, le nombre d’accés mémoire (lecture ou
écriture) fournit souvent une approximation réaliste.
Deux modeles d’analyse sont utilisés selon les situations.

— Le plus souvent, on se limite a un ordre de grandeur global, exprimé par un O ou

un O, en considérant chaque groupe d’opérations élémentaires comme une unité
de complexité.

— Lorsque cela est pertinent, on effectue un décompte précis portant sur une opé-
ration représentative, comme les acces mémoire, les multiplications ou les com-
paraisons d’éléments.

2 Complexité des boucles

Une boucle répete une suite d’instructions; pour en analyser la complexité, on détermine le
nombre de tours exécutés par son corps.

2.1 Boucles simples.

Pour une boucle for simple, I’entéte permet de connaitre directement le nombre d’itérations,
en particulier lorsque l'indice est incrémenté ou décrémenté d’une unité a chaque tour. Ce
cas fréquent correspond notamment au parcours complet d’'un tableau. Les deux boucles
suivantes effectuent chacune n tours, I'indice prenant successivement les valeurs de 0 a n —1,
dans 'ordre croissant ou décroissant.

for (int i = 0; i < n; i++) { ... }
for (int j =n-1; j>=0; j=——) { ... }

Un appel power_n(a,n) ala fonction d’exponentiation naive effectue systématiquement
n tours de boucle, et donc n multiplications.

Lorsque l'indice de boucle est incrémenté d’une valeur constante k£ > 1, le nombre de tours
est égal a la longueur de l'intervalle divisée par k. Par exemple, la boucle suivante effectue
[n/2] tours.

for (int i =0; i <n; i+=2)4{ ... 1%}

Si I'indice de boucle est multiplié ou divisé a chaque itération, le nombre de tours devient
logarithmique. Les boucles suivantes effectuent [log(n)]| tours.

for (int i = 0; i <n; i*x=2){ ...}
for (int i =n; i >0;1i/=2){ ... 1%}

2.2 Boucles conditionnelles

Le nombre d’itérations d’une boucle while se détermine en analysant la condition d’arrét et
I’évolution des variables impliquées.

ii = n;

“while (G >0 {
|
|

On retrouve des schémas analogues a ceux des boucles for, mais aussi des évolutions moins
directement prévisibles.

1 |int power_b(int a, int n) {

2 int r = 1;

3 while (n > 0) {

4 if (n % 2 ==1) r *= a;

a = a * a;
6 n=n/2;
7 }

8 return r;

9}

Dans la fonction power_b(a,n) precedente, la variable n est divisée par deux (avec
arrondi inférieur) a chaque itération, ce qui entraine un nombre de tours logarithmique
en n. Plus précisément, si 2 < n < 2! la boucle réalise k + 1 itérations.

Chaque itération effectue une ou deux multiplications; 1'appel power_b(a,n) réalise
donc entre [log(n)| +1 et 2|log(n)] + 2 multiplications, soit une complexité O(log(n)).

La boucle suivante calcule les nombres de Fibonacci jusqu’a atteindre ou dépasser une
valeur n.

1/int a = 0, b = 1;
2 \while (b < n) {
3 b =a + b;

4 a=>b- a;

5}

Le nombre d’itérations est égal au nombre de termes de la suite de Fibonacci apparte-
nant a l'intervalle [0, n[, quantité calculable mais nécessitant une analyse mathématique
non triviale.

2.3 Boucles emboitées.

Dans des boucles imbriquées, la boucle interne est exécutée intégralement a chaque itération
de la boucle externe. Lorsque le nombre d’itérations internes est constant, le nombre total
d’exécutions est donné par un produit ; par exemple, le corps suivant est exécuté n? fois.

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

}

Si le nombre d’itérations de la boucle interne varie, le nombre total d’exécutions s’obtient en
additionnant, pour chaque itération externe, le nombre correspondant d’itérations internes.

Le tri par sélection consiste a choisir successivement le plus petit élément restant du
tableau.

1 |void selection_sort(int al], int n) {

2 for (int 1 = 0; i < mn - 1; i++) {

3 int j_min = 1i;

4 for (int j =1+ 1; j < n; j+t) {

5 if (alj] < alj_min]) { j_min = j; %}
6 }

7 swap(a, i, j_min);

8 }

0}

La boucle externe effectue n — 2 itérations et, pour chaque 7, la boucle interne en réalise
n — ¢ — 1. Le nombre total d’exécutions du test if (a[j] < al[j_min]) est donc

n—2 n—1 _
Z(n—i—l):Zi’:Ln Y
=0 =1 2

3 Complexité en moyenne

La complexité moyenne d’un algorithme prend en compte I’ensemble des entrées possibles.
Complexité moyenne

Pour une taille d’entrée N, la complexité moyenne est la moyenne des complexités
associées a toutes les entrées possibles de cette taille.

Cette notion est directement exploitable lorsque 'ensemble des entrées de taille N est fini;
dans le cas contraire, elle nécessite une modélisation finie.

3.1 Complexité moyenne par dénombrement.

Lorsque le domaine des entrées est fini, la complexité moyenne se calcule en sommant les
complexités de toutes les entrées possibles, puis en divisant par leur nombre. Les tableaux
booléens constituent un exemple typique : pour une taille IV, il existe 2V tableaux distincts.

Dans le programme first_one, qui recherche la premiere occurrence de 1 dans un
tableau de 0 et de 1, le nombre de cases consultées est égal a k£ + 1 pour un tableau
contenant k zéros initiaux suivis d'un 1, varie de 1 dans le meilleur cas a n dans le pire
cas, et peut étre analysé en dénombrant les configurations correspondantes parmi les
2V tableaux possibles.

On calcule la complexité moyenne de first_one en dénombrant les tableaux booléens
de taille NV selon le nombre k de cases consultées.

Pour k£ = N, seuls un tableau est possibles (un unique 1 en derniére position). Pour
1 < k < N, les tableaux commencent par k£ — 1 zéros, suivis d'un 1, les N — k cases
restantes étant arbitraires, soit 2V % tableaux.

La complexité totale sur ’ensemble des 2V entrées est alors

N
Cr(N) =N+ k2",
k=1
d’ou la complexité moyenne

N k
W Tc

Cn(N) =

N
On obtient en particulier
Cn(N+1) = Cn(N) = =+

ce qui montre que C,,(N) est une somme d’inverses de puissances de 2.
Une approche alternative consiste a raisonner par case : la case d’indice k est consultée
pour 2V7F tableaux. En sommant sur toutes les cases, on obtient

N—-1 Nk N—-1 1 1
Cr(N)= > 2V F, Cm(N):Z?:2—2N71.
k=0 k=0

La formule obtenue est cohérente : on a C,,(1) = 1 et, pour tout N, la complexité
moyenne est comprise entre le meilleur cas 1 et le pire cas N.

3.2 Modeéle des tableaux aléatoires.

Lorsque I'ensemble des entrées possibles est infini, la complexité moyenne dépend du choix
d’un modéle probabiliste, défini par des classes d’entrées pondérées.

Pour les tableaux d’entiers non bornés, méme a taille N fixée, le nombre d’entrées est infini.
On adopte alors un modele abstrait qui ignore les valeurs exactes et ne considere que les
relations d’ordre entre les elements Pour deux cases i et j, les cas a[i] < a[j] et alj] > ali]
ont chacun une probablhte , tandis que 1’égalité a une probabilité nulle.

Ainsi, seules les configurations ou tous les éléments sont distincts ont un poids non nul.
Les classes d’entrées de taille NV Correspondent alors aux N! ordres relatifs possibles, tous
équiprobables, chacun de p01ds <. Ce modele est celui des tableauz aléatoirement ordonnés
sans doublons.

Il constitue un cadre naturel pour I’étude de la complexité moyenne des algorithmes de tri.

4 Complexité des fonctions récursives

Dans le cas d’algorithmes récursifs, la complexité peut elle-méme étre caractérisée par des
équations récursives.

On veut calculer n! =1 x 2 x 3 x --- x n. Voici une définition immédiate en OCaml.

1 |let rec fact n =
2 if n < 2 then 1 else n * fact (n-1)

Le nombre C'(n) de multiplications réalisées pour calculer fact (n) suit I'une des deux
formules suivantes.
— pour n < 2, zéro,
— pour n > 2, une multiplication en plus du colt du calcul de fact(n-1).
Autrement dit :
C(0)=0
c(1)=0
Cn+1)=1+4+C(n) sin>1

4.1 Résolution des suites récursives simples

Les équations récursives de complexité définissent des fonctions C' : N — R, que l'on peut
interpréter comme des suites numériques (C(n)),en-

Suite numérique

Une suite numérique est une fonction N — R, notée (uy,)nen-

Certaines formes classiques de suites récursives admettent des expressions fermées connues.

— Une suite définie par u,,1 = a + u,, est arithmétique et vérifie u,, = an + b.
— Une suite définie par w, 1 = au, est géométrique et vérifie u,, = ba".

Ces résultats permettent de résoudre directement certaines équations de complexité. Ainsi,
la complexité de fact définit une suite arithmétique et vérifie C'(n) = n—1 pour n > 1. Pour
I’exponentiation rapide, la relation devient arithmétique en se restreignant aux puissances de
2, ce qui donne C'(2%) = k + 2.

Dans des cas plus généraux, on peut utiliser un raisonnement par télescopage : si u,+1 =
u, + f(n), alors
un:un0+ Z f(k)a

no<k<n

ce qui ramene le calcul de la suite a ’étude d’une somme.

Enfin, lorsqu’aucune expression explicite simple n’est accessible, on peut encadrer les valeurs
de la suite par récurrence.

Pour I'exponentiation rapide,

1 |let rec power a n =
2 if n = 0 then 1

3 else
4 let b = power a (n / 2) in
5 if n mod 2 = 0 then b * b

6 else a * b x Db

si 2F < m < 281 alors
E+1<C(n)<2k+1),

d’ou, pour tout n, un encadrement logarithmique

log(n) < C(n) < 2log(n).

5 Complexité amortie

La complezité amortie d’'un algorithme correspond a une analyse lissée de sa complexité
sur une séquence d’invocations successives. Elle vise a garantir un équilibre global entre des
appels peu coliteux et des appels ponctuellement tres cotiteux, en s’intéressant au coft total
d’une séquence plutot qu’au colit d’une exécution isolée.

5.1 Réalisation d’un compteur binaire.

Pour énumérer tous les tableaux de n booléens, on peut les interpréter comme les écritures
binaires des entiers de 0 a 2" — 1. L’énumération consiste alors a passer d'un tableau au
suivant en effectuant un incrément binaire, c’est-a-dire en reproduisant les opérations sur les
bits correspondant a l’ajout de 1.

La fonction C suivante réalise un tel incrément, en supposant que le bit de poids faible est a
I’indice 0.

void incr(bool c[], int n) {

int 1 = 0;

while (i < n && c[i]) {
cl[i]l = 0;
i++;

}

if (i < n) cl[i] = 1;
}

Le cotit d'un appel a incr dépend du nombre de bits consécutifs égaux a 1 a partir de I'indice
0, c’est-a-dire du nombre de retenues a propager. Dans le meilleur cas, lorsque c[0] = 0, la
boucle while n’est pas exécutée et 'on effectue seulement deux acces mémoire. Dans le pire
cas, lorsque tous les bits valent 1, la boucle parcourt ’ensemble du tableau et lit puis modifie
chacune des n cases, soit 2n acces mémoire. Le pire cas d'un incrément est donc linéaire en
n, ce qui donne une borne grossiére en O(n2") pour I"énumération compleéte.

Equilibre 4 long terme. Cependant, les 2" appels successifs & incr nécessaires a 'énumé-
ration complete ne portent pas sur des entrées arbitraires. En partant du tableau représentant
0, on connait exactement la suite des tableaux manipulés. L.’observation des premiers appels
met en évidence une structure réguliere, illustrée par le tableau suivant.

10

Numéro | Parametre | Nombre de tours
0 00000...0 0
1 10000...0 1
2 01000...0 0
3 11000...0 2
4 00100...0 0
5 10100...0 1
6 01100...0 0
7 11100...0 3
8 00010...0 0
9 10010...0 1
10 01010...0 0
11 11010...0 2
12 00110...0 0
13 10110...0 1
14 01110...0 0
15 11110...0 4

On observe qu’un appel sur deux n’effectue aucun tour de boucle, qu'un appel sur quatre en
effectue un, un appel sur huit en effectue deux, etc. Les appels cotliteux sont donc de plus en
plus rares. On peut montrer que le nombre total de tours de boucle sur I'ensemble des 2"
appels est proportionnel au nombre d’appels, et non a la taille n des tableaux.

La complexité amortie s’applique précisément a ce type de situation : des algorithmes géné-
ralement peu coliteux, mais pouvant étre tres chers sur certaines entrées, a condition que ces
entrées défavorables apparaissent suffisamment rarement pour garantir une borne globale sur
une séquence d’exécutions.

L’analyse nécessite d’identifier un état évolutif (ici le tableau de booléens) et de comprendre
comment son évolution conditionne 'apparition des opérations coiiteuses.

5.2 Méthode du potentiel.

La méthode du potentiel, aussi appelée méthode du physicien, formalise cette intuition en
associant a chaque état possible z de l'algorithme une valeur non négative ®(z), appelée
potentiel, représentant un cotit latent.

Potentiel
Une fonction de potentiel associe a chaque entrée possible x d’un algorithme une valeur
O(z) > 0.

Les algorithmes a bonne complexité amortie alternent typiquement entre des opérations peu
coliteuses qui font croitre le potentiel, et des opérations cotiteuses associées a une forte dimi-
nution du potentiel. L’analyse amortie tient compte a la fois du cofit réel d'une opération et
de la variation de potentiel qu’elle induit.

Colit amorti

Pour une opération transformant une entrée x. en une sortie x,, le colit amorti est

11

défini par
A=CH d(z;) — P(xe),

ou C' désigne le cotit réel de 'opération.

Les notions d’entrée et de sortie recouvrent ici ’ensemble de 1’état manipulé par I'algorithme :
parametres, structures de données et état mémoire avant et apres 'appel.

Theoreme de amortissement
Considérons une suite de n opérations consécutives

op2 Opn

op1
Tog— T4 — ... —> X,

telle que ®(x¢) = 0. En notant C; le coiit réel et A; le cotit amorti de op;, on a

La démonstration repose sur une somme télescopique faisant apparaitre la variation globale
de potentiel. En particulier, si le cotit amorti est borné par une constante k, alors toute
séquence de n opérations a un cofit réel total inférieur ou égal a kn, ce qui garantit un cotit
moyen constant.

5.3 Analyse amortie du compteur binaire.

Le cofit réel d’un incrément du compteur binaire dépend du nombre k£ d’occurrences consé-
cutives de 1 a partir de l'indice 0. Pour un tableau c, un appel a incr(c,n) réalise :

— 2(k + 1) accés mémoire si k < n,
— 2k acces mémoire si k = n.

Pour I'analyse amortie, on introduit une fonction de potentiel mesurant la présence de 1 dans
le tableau, définie par
®(c) = 2 x (nombre de 1 dans c).

Lors d’un appel a incr, les k£ premiers 1 sont remplacés par des 0, puis, si k£ < n, le 0 suivant
devient 1. La variation de potentiel entre le tableau initial c et le tableau obtenu ¢’ est alors
—2k+2 sik<n

/ o)

() = 2(c) = { —2k sik=n.

Le cotit amorti A. d'un appel a incr sur un tableau ayant k& occurrences consécutives de 1 a
partir de l'indice 0 vaut donc

A - 2(k+1)—2k+2=4 sik<n,
] 2k—2k=0 sik=n.
En conclusion, la fonction d’incrément du compteur binaire posséde une complexité amortie
bornée par 4. Toute séquence d’incréments partant du tableau nul effectue ainsi en moyenne
moins de 4 accés mémoire par incrément, malgré 'existence d’appels de cotit linéaire en n.

12

6 Différence entre complexité moyenne et complexité
amortie

On peut trouver des similitudes entre les notions de complexité en moyenne et de complexité
amortie. Ces deux concepts sont cependant bien différents.

— Par définition, la complexité en moyenne est une moyenne : elle nous donne une com-
plexité supposée représentative du plus grand nombre d’entrées, mais sans apporter
aucune garantie sur la complexité d’une opération particuliere, ni méme d’une séquence
d’opérations particulieres. Rien n’empéche qu'une séquence mal choisie d’invocations
d’un algorithme donné enchaine les pires cas, au mépris de la valeur moyenne.

— La complexité amortie donne une borne garantie pour une séquence d’opérations : elle
ne dit rien de la complexité pour une entrée particuliere, mais assure un équilibre a
toute séquence d’opérations, méme la moins favorable. Cette notion présuppose que les
invocations successives de 'algorithme ne sont pas indépendantes les unes des autres,
et qu'un état ou une structure de données évolue avec chaque nouvelle invocation.

7 Complexité spatiale

La complexité spatiale d’'un algorithme mesure la quantité de mémoire qu’il utilise. Comme
pour la complexité temporelle, on 'exprime généralement de fagon asymptotique en fonction
de la taille de 'entrée, et 'on peut distinguer meilleurs cas, pires cas et complexité moyenne.

L’évaluation de la complexité spatiale consiste a identifier les données allouées en mémoire,
en se référant aux modeles d’exécution des langages OCaml et C.

On retient notamment les regles suivantes :

— chaque variable déclarée compte pour une unité;

— chaque structure en C compte pour une constante, correspondant a la taille de sa
représentation mémoire, que l'on peut ramener a 1 lorsqu’on raisonne en ordre de
grandeur ;

— un tableau de taille n compte pour n fois la taille de ses éléments, ou simplement pour
n si ceux-ci ont une taille constante.

La somme des tailles des données allouées fournit une borne sur la complexité spatiale. Tou-
tefois, toutes les données ne sont pas nécessairement présentes simultanément en mémoire : la
complexité spatiale correspond donc uniquement a la quantité maximale de mémoire utilisée
a un instant donné.

Complexité spatiale

La complexité spatiale d'une exécution est la quantité maximale de mémoire occupée
au cours de cette exécution.

Dans de nombreux cas, cette quantité est facile a estimer. Par exemple, le tri par insertion
n’utilise que des variables locales et a donc une complexité spatiale constante, tandis que le
tri par fusion requiert un tableau auxiliaire de taille n et possede une complexité spatiale
linéaire.

7.1 Complexité spatiale cachée : la pile d’appels

Un algorithme peut présenter une complexité spatiale non négligeable sans allocation explicite
de mémoire, du fait de la pile d’appels récursifs.

Dans le tri rapide, aucune structure supplémentaire n’est créée et chaque appel a
quickrec n’utilise que quelques variables locales. Cependant, lors des appels récur-
sifs emboités, les variables locales de tous les appels présents dans la pile coexistent en
mémoire et leurs cotits s’additionnent.

La complexité spatiale du tri rapide est donc proportionnelle a la profondeur maximale
de récursion : logarithmique en moyenne en la taille du tableau, mais linéaire dans le
pire cas. Avec une variante exploitant 'optimisation des appels terminaux, elle devient
logarithmique méme dans le pire cas.

7.2 Compromis spatio-temporel

La complexité spatiale et la complexité temporelle étant distinctes, un algorithme peut pri-
vilégier 'une au détriment de I'autre.

Considérons le calcul du coefficient binomial (Z) a partir de la relation

()-C2)+()

Cette formule conduit directement a I'implémentation récursive suivante.

1 |int binom_rec(int k, int n) {

2 assert(0 <= k && k <= n);
3 if (k == 0 || k == n)

4 return 1;

5 else

6 return binom_rec(k-1, n-1) + binom_rec(k, n-1);

7|}

Cette fonction n’utilise aucune structure de données autre que la pile d’appels, mais
possede une complexité temporelle exponentielle en n, due aux recalculs répétés des
mémes coefficients.

Mémorisation : dépenser de I’espace pour gagner du temps. La complexité
temporelle du calcul des coefficients binomiaux peut étre fortement réduite en mémori-
sant les valeurs déja calculées. La fonction binom_rec utilise un tableau bidimensionnel
pour stocker les coefficients connus, et ne calcule que ceux qui ne sont pas encore ren-
seignés.

Le calcul de g) illustre cette approche : seuls les coefficients nécessaires du triangle de

Pascal sont effectivement évalués.

14

k=10 1 2 3 4 5 6 7
n=0]1

1 |1 1

2 |1 2 1

3 |1 3 3 1

4 |1 4 6 4 -—

5 |— 5 10 10 — —
6 |— — 15 20 — — —
7T |- - =35 - = = -

La fonction binom_memo initialise le tableau avant d’appeler binom_rec. Les coefficients
égaux a 1 ne sont pas stockés, car ils ne nécessitent aucun calcul. Cette mémorisation
évite tout recalcul : le nombre de coefficients

//Coeffictents du binome dynamiques
int binom(int k, int n) {
int *row = calloc(n + 1, sizeof(int));
for (int i = 0; i <= n; i++) {
row[i] = 1;
for (int j =1 - 1; j > 0; j—-)
row[j] += row[j-1];
}

return rowlk];

Savoir oublier. On peut encore ajuster le compromis espace—temps avec une troi-
sieme version, qui calcule légerement plus de coefficients que la précédente (tout en
restant sous une borne quadratique), mais se contente d’une complexité spatiale li-
néaire. L’idée consiste a calculer successivement les lignes du triangle de Pascal jusqu’a
la (n+ 1)-éme, en ne conservant en mémoire que la derniere ligne calculée (programme
6.12).

Pour éviter d’écraser des valeurs encore nécessaires, la mise a jour se fait en partant de
la fin de la ligne. En reprenant n = 7, la ligne obtenue a la fin de I'étape ¢+ = 5 est la
suivante, les deux dernieres cases étant déja réservées mais encore inutilisées.

i=5 [1][5][10][10][5][1][=][]

A Tétape suivante, pour ¢ = 6, apres deux itérations de la boucle interne, les cases
d’indices 4 a 6 ont été mises a jour. La prochaine opération consiste a mettre a jour
row[3] avec la somme row[2] + row[3].

=3 .
" i=6 [1][5][10][10][15][6][1][=]

a traiter déja a jour

Cette méthode calcule davantage de coefficients que binom_memo, puisqu’elle évalue
entierement chaque ligne du triangle. La complexité temporelle reste néanmoins qua-
dratique en n, tandis que la complexité spatiale est réduite a un seul tableau de taille
proportionnelle a n.

15

8 Liens entre complexité spatiale et complexité tempo-
relle

Chaque acces a un mot mémoire étant une opération, la complexité temporelle est toujours
supérieure ou égale a la quantité de mémoire a laquelle un programme accede. Ceci per-
met d’établir un lien entre complexité spatiale et complexité temporelle, dont le détail est
cependant légerement différent d’'un langage a ’autre.

— En OCaml, la complexité spatiale est toujours bornée par la complexité temporelle. En
effet toute zone de mémoire utilisée en OCaml est initialisée, et le colit temporel de la
création d’une structure ne peut donc pas étre inférieur a la taille de cette structure.

— En C, I'allocation de mémoire avec malloc n’initialise pas la zone de mémoire utilisée.
On peut donc avoir une complexité spatiale dépassant la complexité temporelle dans le
cas ou l'on réserve avec malloc plus de mémoire que ce a quoi on accédera effectivement.

17

18

19

20

16

9 Tri rapide

Les boucles et la récursion ne sont pas deux techniques antagonistes. Il est tout a fait possible
d’utiliser les deux a l'intérieur d’une méme fonction. On peut observer ceci par exemple avec
I’algorithme de tri rapide, pour I'analyse duquel nous allons devoir combiner les techniques
des sections précédentes.

Présentation de D’algorithme. Le cocur de 'algorithme de ¢ri rapide est le suivant :
apres avoir choisi un élément « pivot » on trie séparément les éléments inférieurs au pivot
et les éléments supérieurs au pivot. Dans le code C du programme 6.7 la fonction principale
quickrec trie le segment [I, r[du tableau a, c’est-a-dire entre les indices [(inclus) et r (exclu).

Le pivot est a[l], le premier élément du segment a trier. La premieére étape consiste a
réarranger les éléments en trois groupes : a gauche les éléments plus petits que le pivot, a
droite les éléments plus grands, et au milieu le pivot et les éventuels autres éléments qui lui
seraient égaux.

L’algorithme conclut alors en triant récursivement, et surtout séparément, les groupes gauche
et droit.

Le réarrangement en trois groupes est opéré par la boucle for. Durant I’exécution de cette
boucle les trois groupes se forment progressivement avec les éléments d’'un quatriéme groupe :
celui des éléments non encore répartis. Ce quatrieme groupe est situé dans le tableau entre
le groupe des éléments égaux au pivot et celui des éléments plus grands que le pivot.

La boucle progresse en consultant le premier élément de la zone a répartir, et en 'interver-
tissant au besoin avec un autre élément pour le placer dans le bon groupe. Le segment [i, hi]
des éléments a répartir diminue a chaque tour, soit par incrément de ¢ soit par décrément de

ha.

Listing 1 — Programme 6.7 — tri rapide d'un tableau

void swap(int a[], int i, int j) {
int tmp = alil;
ali] = alj]l;
aljl = tmp;

// trie uniquement all..r[
void quickrec(int a[], int 1, int r) {
if (r - 1 <= 1) return;
int p = all], 1o =1, hi = r;
for (int i = 1+1; i < hi;) {
it (@li] ==p) { i+ }
else if (ali] < p) { swap(a, i++, lo++); }
else /* a[i] > p */ { swap(a, i, --hi); }
}
quickrec(a, 1, lo);
quickrec(a, hi, r);

void quicksort(int al[l, int n) {

17

knuth_shuffle(a, n);
quickrec(a, 0, n);

