
1

Informatique Cours
Complexité Ipesup

Objectifs
— analyser la complexité temporelle et spatiale d’un algorithme ;
— distinguer et calculer complexité dans le pire cas, en moyenne et amortie ;
— résoudre des équations de complexité issues d’algorithmes récursifs ;
— comprendre les compromis espace/temps et leurs implications pratiques.

Différents algorithmes pouvaient avoir des performances très différentes, même si les deux
algorithmes résolvent le même problème ! La complexité est l’étude des performances des
algorithmes. On l’aborde selon deux critères principaux.

— La complexité temporelle : temps de calcul nécessaire à l’exécution de l’algorithme.
— La complexité spatiale : espace mémoire utilisé pour les données de travail de l’algo-

rithme.

1 Complexité temporelle

En général, les performances d’un algorithme dépendent étroitement des entrées considérées.

Définition
La complexité temporelle d’une exécution sur une entrée donnée correspond au nombre
d’opérations atomiques effectuées.

1.1 Complexité en fonction de la taille de l’entrée.

On exprime classiquement la complexité en fonction de la taille des entrées. Ainsi, pour un
algorithme opérant sur un tableau de N entiers, le temps de calcul et l’espace mémoire sont
exprimés en fonction de N .

Exemple

Considérons un algorithme déterminant si deux tableaux a1 et a2, de tailles respectives
N1 et N2, possèdent un élément commun : chaque élément de a1 est comparé successive-
ment à tous les éléments de a2 jusqu’à détection d’un élément commun ou épuisement
des comparaisons possibles.

1 bool intersect(int a1[], int n1, int a2[], int n2) {
2 for (int i1 = 0; i1 < n1; i1++) {
3 for (int i2 = 0; i2 < n2; i2++) {
4 if (a1[i1] == a2[i2]) { return true; }
5 }
6 }
7 return false;
8 }

2

Les comparaisons sont effectuées uniquement dans le test if (a1[i1] == a2[i2]),
placé dans deux boucles imbriquées. En l’absence d’interruption par un return true, la
boucle interne réalise N2 comparaisons à chaque itération de la boucle externe, exécutée
N1 fois, soit un total de N1 ×N2 comparaisons lorsque les tableaux n’ont aucun élément
commun. À l’inverse, si un élément commun existe, l’exécution s’interrompt après un
nombre de comparaisons dépendant de sa position, compris entre 1 et N1 × N2.

1.2 Pire cas, meilleur cas, complexité moyenne

On obtient ainsi un encadrement du nombre C de comparaisons en fonction des tailles N1 et
N2 des tableaux d’entrée :

1 ≤ C ≤ N1 × N2.

Toutes les valeurs intermédiaires étant possibles, la complexité d’une exécution donnée ne
dépend pas uniquement de la taille des entrées. On introduit donc trois notions servant de
repères pour caractériser la complexité d’un algorithme.

Définition
Pour une taille d’entrée donnée, on distingue :

— le pire cas, correspondant à la complexité maximale possible ;
— le meilleur cas, correspondant à la complexité minimale possible ;
— le cas moyen, défini comme la moyenne des complexités sur l’ensemble des

entrées possibles de cette taille.

Dans le cas de la version simple de intersect, le pire cas est N1 × N2, lorsque les tableaux
n’ont aucun élément commun ou lorsque l’unique élément commun apparaît en dernière posi-
tion dans chacun d’eux, tandis que le meilleur cas est 1, lorsque les deux tableaux commencent
par le même élément.
La complexité moyenne ne se déduit pas directement : elle dépend de la distribution des
valeurs possibles dans les tableaux. Si le nombre de valeurs distinctes est très grand devant
N1 et N2, la probabilité d’un élément commun est faible et la complexité moyenne est proche
du pire cas N1 × N2. À l’inverse, si les valeurs possibles sont peu nombreuses, la présence
d’un élément commun devient probable, ce qui réduit la complexité moyenne.

1.3 Profils de complexité.

Complexité Appellation Cas typique
1 constante opération de base

log(N) logarithmique dichotomie
N linéaire boucle simple, recherche séquentielle

N log(N) linéarithmique diviser pour régner, tri fusion
N2 quadratique deux boucles imbriquées, tri par insertion
N3 cubique trois boucles imbriquées, produit de matrices
2N exponentielle recherche exhaustive

Les complexités N2 et N3 sont des cas particuliers de complexité polynomiale, c’est-à-dire de
la forme Nk.

3

1.4 Ordres de grandeur.

Dans l’analyse de la complexité d’un algorithme, on s’intéresse principalement à la complexité
asymptotique, qui décrit l’évolution de la complexité pour de grandes valeurs de N . On cherche
généralement non pas une expression exacte, mais une indication de l’ordre de grandeur.
Les notations de Landau fournissent des outils pour formaliser ces ordres de grandeur.

Notations de Landau

Étant donnée une fonction f : N → N, on a les notations suivantes.
— O(f(n)) désigne les fonctions majorées par f , à un facteur constant près. On note

g(n) = O(f(n)) s’il existe un facteur k ∈ R+ et un rang n0 ∈ N tels que pour
tout n ≥ n0, on a g(n) ≤ kf(n).

— Ω(f(n)) désigne les fonctions minorées par f , à un facteur constant près. On note
g(n) = Ω(f(n)) s’il existe un facteur k ∈ R+ et un rang n0 ∈ N tels que pour
tout n ≥ n0, on a kf(n) ≤ g(n).

— Θ(f(n)) désigne les fonctions du même ordre de grandeur que f . On note g(n) =
Θ(f(n)) s’il existe deux facteurs k1, k2 ∈ R+ et un rang n0 ∈ N tels que pour
tout n ≥ n0, on a k1f(n) ≤ g(n) ≤ k2f(n).

— ∼ f(n) désigne les fonctions équivalentes à f . On note g(n) ∼ f(n) si
limn→∞

g(n)
f(n) = 1.

Les définitions des notations de Landau permettent de déduire directement des règles de
combinaison, notamment pour les ordres de grandeur Θ.

Règles de calcul sur les ordres de grandeur

L’ordre de grandeur d’un produit est le produit des ordres de grandeur, à une constante
près.

— Si C(n) = Θ(f(n)), alors kC(n) = Θ(f(n)).
— Si C(n) = Θ(f(n)) et D(n) = Θ(g(n)), alors C(n)D(n) = Θ(f(n)g(n)).

L’ordre de grandeur d’une somme est celui du terme dominant.
— Si C(n) = O(D(n)), alors C(n) + D(n) = Θ(D(n)).

Que compter ? Le temps d’exécution d’un programme dépend des opérations réali-
sées, dont les coûts élémentaires (arithmétique, tests, accès mémoire, etc.) ne sont pas
nécessairement comparables.
Un décompte exhaustif de toutes les opérations est à la fois difficile et peu pertinent, car
il reviendrait à additionner des coûts hétérogènes. Le raisonnement en termes d’ordres
de grandeur, via les notations O ou Θ, est volontairement imprécis : il décrit des vitesses
de croissance sans fournir de valeur exacte pour une taille donnée, mais constitue sou-
vent l’analyse la plus pertinente en l’absence d’hypothèses sur la machine d’exécution.
Pour des estimations plus fines, on peut utiliser la notation d’équivalence ∼, qui impose
de préciser les constantes multiplicatives. Dans ce cadre, on ne comptabilise pas toutes
les opérations, mais seulement celles jugées représentatives du temps d’exécution réel.
Pour les programmes manipulant des tableaux, le nombre d’accès mémoire (lecture ou
écriture) fournit souvent une approximation réaliste.
Deux modèles d’analyse sont utilisés selon les situations.

— Le plus souvent, on se limite à un ordre de grandeur global, exprimé par un O ou

4

un Θ, en considérant chaque groupe d’opérations élémentaires comme une unité
de complexité.

— Lorsque cela est pertinent, on effectue un décompte précis portant sur une opé-
ration représentative, comme les accès mémoire, les multiplications ou les com-
paraisons d’éléments.

2 Complexité des boucles

Une boucle répète une suite d’instructions ; pour en analyser la complexité, on détermine le
nombre de tours exécutés par son corps.

2.1 Boucles simples.

Pour une boucle for simple, l’entête permet de connaître directement le nombre d’itérations,
en particulier lorsque l’indice est incrémenté ou décrémenté d’une unité à chaque tour. Ce
cas fréquent correspond notamment au parcours complet d’un tableau. Les deux boucles
suivantes effectuent chacune n tours, l’indice prenant successivement les valeurs de 0 à n − 1,
dans l’ordre croissant ou décroissant.

1 for (int i = 0; i < n; i++) { ... }
2 for (int j = n - 1; j >= 0; j--) { ... }

Exemple

Un appel power_n(a,n) à la fonction d’exponentiation naïve effectue systématiquement
n tours de boucle, et donc n multiplications.

Lorsque l’indice de boucle est incrémenté d’une valeur constante k > 1, le nombre de tours
est égal à la longueur de l’intervalle divisée par k. Par exemple, la boucle suivante effectue
⌊n/2⌋ tours.

1 for (int i = 0; i < n; i += 2) { ... }

Si l’indice de boucle est multiplié ou divisé à chaque itération, le nombre de tours devient
logarithmique. Les boucles suivantes effectuent ⌊log(n)⌋ tours.

1 for (int i = 0; i < n; i *= 2) { ... }
2 for (int i = n; i > 0; i /= 2) { ... }

2.2 Boucles conditionnelles

Le nombre d’itérations d’une boucle while se détermine en analysant la condition d’arrêt et
l’évolution des variables impliquées.

1 i = n;
2 while (i > 0) {
3 ...
4 i -= 1;

5

5 }

On retrouve des schémas analogues à ceux des boucles for, mais aussi des évolutions moins
directement prévisibles.

Exemple

1 int power_b(int a, int n) {
2 int r = 1;
3 while (n > 0) {
4 if (n % 2 == 1) r *= a;
5 a = a * a;
6 n = n / 2;
7 }
8 return r;
9 }

Dans la fonction power_b(a,n) precedente, la variable n est divisée par deux (avec
arrondi inférieur) à chaque itération, ce qui entraîne un nombre de tours logarithmique
en n. Plus précisément, si 2k ≤ n < 2k+1, la boucle réalise k + 1 itérations.
Chaque itération effectue une ou deux multiplications ; l’appel power_b(a,n) réalise
donc entre ⌊log(n)⌋ + 1 et 2⌊log(n)⌋ + 2 multiplications, soit une complexité Θ(log(n)).

Exemple

La boucle suivante calcule les nombres de Fibonacci jusqu’à atteindre ou dépasser une
valeur n.

1 int a = 0, b = 1;
2 while (b < n) {
3 b = a + b;
4 a = b - a;
5 }

Le nombre d’itérations est égal au nombre de termes de la suite de Fibonacci apparte-
nant à l’intervalle [0, n[, quantité calculable mais nécessitant une analyse mathématique
non triviale.

2.3 Boucles emboîtées.

Dans des boucles imbriquées, la boucle interne est exécutée intégralement à chaque itération
de la boucle externe. Lorsque le nombre d’itérations internes est constant, le nombre total
d’exécutions est donné par un produit ; par exemple, le corps suivant est exécuté n2 fois.

1 for (int i = 0; i < n; i++) {
2 for (int j = 0; j < n; j++) {
3 ...
4 }
5 }

Si le nombre d’itérations de la boucle interne varie, le nombre total d’exécutions s’obtient en
additionnant, pour chaque itération externe, le nombre correspondant d’itérations internes.

6

Exemple

Le tri par sélection consiste à choisir successivement le plus petit élément restant du
tableau.

1 void selection_sort(int a[], int n) {
2 for (int i = 0; i < n - 1; i++) {
3 int j_min = i;
4 for (int j = i + 1; j < n; j++) {
5 if (a[j] < a[j_min]) { j_min = j; }
6 }
7 swap(a, i, j_min);
8 }
9 }

La boucle externe effectue n−2 itérations et, pour chaque i, la boucle interne en réalise
n − i − 1. Le nombre total d’exécutions du test if (a[j] < a[j_min]) est donc

n−2∑
i=0

(n − i − 1) =
n−1∑
i′=1

i′ = n(n − 1)
2 .

3 Complexité en moyenne

La complexité moyenne d’un algorithme prend en compte l’ensemble des entrées possibles.

Complexité moyenne

Pour une taille d’entrée N , la complexité moyenne est la moyenne des complexités
associées à toutes les entrées possibles de cette taille.

Cette notion est directement exploitable lorsque l’ensemble des entrées de taille N est fini ;
dans le cas contraire, elle nécessite une modélisation finie.

3.1 Complexité moyenne par dénombrement.

Lorsque le domaine des entrées est fini, la complexité moyenne se calcule en sommant les
complexités de toutes les entrées possibles, puis en divisant par leur nombre. Les tableaux
booléens constituent un exemple typique : pour une taille N , il existe 2N tableaux distincts.

Exemple

Dans le programme first_one, qui recherche la première occurrence de 1 dans un
tableau de 0 et de 1, le nombre de cases consultées est égal à k + 1 pour un tableau
contenant k zéros initiaux suivis d’un 1, varie de 1 dans le meilleur cas à n dans le pire
cas, et peut être analysé en dénombrant les configurations correspondantes parmi les
2N tableaux possibles.
On calcule la complexité moyenne de first_one en dénombrant les tableaux booléens
de taille N selon le nombre k de cases consultées.

7

Pour k = N , seuls un tableau est possibles (un unique 1 en dernière position). Pour
1 ≤ k < N , les tableaux commencent par k − 1 zéros, suivis d’un 1, les N − k cases
restantes étant arbitraires, soit 2N−k tableaux.
La complexité totale sur l’ensemble des 2N entrées est alors

CT (N) = N +
N∑

k=1
k2N−k,

d’où la complexité moyenne

Cm(N) = N

2N
+

N∑
k=1

k

2k
.

On obtient en particulier

Cm(N + 1) − Cm(N) = 1
2N

,

ce qui montre que Cm(N) est une somme d’inverses de puissances de 2.
Une approche alternative consiste à raisonner par case : la case d’indice k est consultée
pour 2N−k tableaux. En sommant sur toutes les cases, on obtient

CT (N) =
N−1∑
k=0

2N−k, Cm(N) =
N−1∑
k=0

1
2k

= 2 − 1
2N−1 .

La formule obtenue est cohérente : on a Cm(1) = 1 et, pour tout N , la complexité
moyenne est comprise entre le meilleur cas 1 et le pire cas N .

3.2 Modèle des tableaux aléatoires.

Lorsque l’ensemble des entrées possibles est infini, la complexité moyenne dépend du choix
d’un modèle probabiliste, défini par des classes d’entrées pondérées.
Pour les tableaux d’entiers non bornés, même à taille N fixée, le nombre d’entrées est infini.
On adopte alors un modèle abstrait qui ignore les valeurs exactes et ne considère que les
relations d’ordre entre les éléments. Pour deux cases i et j, les cas a[i] < a[j] et a[j] > a[i]
ont chacun une probabilité 1

2 , tandis que l’égalité a une probabilité nulle.
Ainsi, seules les configurations où tous les éléments sont distincts ont un poids non nul.
Les classes d’entrées de taille N correspondent alors aux N ! ordres relatifs possibles, tous
équiprobables, chacun de poids 1

N ! . Ce modèle est celui des tableaux aléatoirement ordonnés
sans doublons.
Il constitue un cadre naturel pour l’étude de la complexité moyenne des algorithmes de tri.

4 Complexité des fonctions récursives

Dans le cas d’algorithmes récursifs, la complexité peut elle-même être caractérisée par des
équations récursives.

8

Exemple

On veut calculer n! = 1 × 2 × 3 × · · · × n. Voici une définition immédiate en OCaml.
1 let rec fact n =
2 if n < 2 then 1 else n * fact (n-1)

Le nombre C(n) de multiplications réalisées pour calculer fact(n) suit l’une des deux
formules suivantes.

— pour n < 2, zéro,
— pour n ≥ 2, une multiplication en plus du coût du calcul de fact(n-1).

Autrement dit : 
C(0) = 0
C(1) = 0
C(n + 1) = 1 + C(n) si n ≥ 1

4.1 Résolution des suites récursives simples

Les équations récursives de complexité définissent des fonctions C : N → R, que l’on peut
interpréter comme des suites numériques (C(n))n∈N.

Suite numérique

Une suite numérique est une fonction N → R, notée (un)n∈N.

Certaines formes classiques de suites récursives admettent des expressions fermées connues.
— Une suite définie par un+1 = a + un est arithmétique et vérifie un = an + b.
— Une suite définie par un+1 = a un est géométrique et vérifie un = b an.

Ces résultats permettent de résoudre directement certaines équations de complexité. Ainsi,
la complexité de fact définit une suite arithmétique et vérifie C(n) = n−1 pour n ≥ 1. Pour
l’exponentiation rapide, la relation devient arithmétique en se restreignant aux puissances de
2, ce qui donne C(2k) = k + 2.
Dans des cas plus généraux, on peut utiliser un raisonnement par télescopage : si un+1 =
un + f(n), alors

un = un0 +
∑

n0≤k<n

f(k),

ce qui ramène le calcul de la suite à l’étude d’une somme.
Enfin, lorsqu’aucune expression explicite simple n’est accessible, on peut encadrer les valeurs
de la suite par récurrence.

Exemple

Pour l’exponentiation rapide,
1 let rec power a n =
2 if n = 0 then 1
3 else
4 let b = power a (n / 2) in
5 if n mod 2 = 0 then b * b
6 else a * b * b

9

si 2k ≤ n < 2k+1 alors
k + 1 ≤ C(n) ≤ 2(k + 1),

d’où, pour tout n, un encadrement logarithmique

log(n) ≤ C(n) ≤ 2 log(n).

5 Complexité amortie

La complexité amortie d’un algorithme correspond à une analyse lissée de sa complexité
sur une séquence d’invocations successives. Elle vise à garantir un équilibre global entre des
appels peu coûteux et des appels ponctuellement très coûteux, en s’intéressant au coût total
d’une séquence plutôt qu’au coût d’une exécution isolée.

5.1 Réalisation d’un compteur binaire.

Pour énumérer tous les tableaux de n booléens, on peut les interpréter comme les écritures
binaires des entiers de 0 à 2n − 1. L’énumération consiste alors à passer d’un tableau au
suivant en effectuant un incrément binaire, c’est-à-dire en reproduisant les opérations sur les
bits correspondant à l’ajout de 1.
La fonction C suivante réalise un tel incrément, en supposant que le bit de poids faible est à
l’indice 0.

1 void incr(bool c[], int n) {
2 int i = 0;
3 while (i < n && c[i]) {
4 c[i] = 0;
5 i++;
6 }
7 if (i < n) c[i] = 1;
8 }

Le coût d’un appel à incr dépend du nombre de bits consécutifs égaux à 1 à partir de l’indice
0, c’est-à-dire du nombre de retenues à propager. Dans le meilleur cas, lorsque c[0] = 0, la
boucle while n’est pas exécutée et l’on effectue seulement deux accès mémoire. Dans le pire
cas, lorsque tous les bits valent 1, la boucle parcourt l’ensemble du tableau et lit puis modifie
chacune des n cases, soit 2n accès mémoire. Le pire cas d’un incrément est donc linéaire en
n, ce qui donne une borne grossière en O(n2n) pour l’énumération complète.

Équilibre à long terme. Cependant, les 2n appels successifs à incr nécessaires à l’énumé-
ration complète ne portent pas sur des entrées arbitraires. En partant du tableau représentant
0, on connaît exactement la suite des tableaux manipulés. L’observation des premiers appels
met en évidence une structure régulière, illustrée par le tableau suivant.

10

Numéro Paramètre Nombre de tours
0 00000...0 0
1 10000...0 1
2 01000...0 0
3 11000...0 2
4 00100...0 0
5 10100...0 1
6 01100...0 0
7 11100...0 3
8 00010...0 0
9 10010...0 1
10 01010...0 0
11 11010...0 2
12 00110...0 0
13 10110...0 1
14 01110...0 0
15 11110...0 4

On observe qu’un appel sur deux n’effectue aucun tour de boucle, qu’un appel sur quatre en
effectue un, un appel sur huit en effectue deux, etc. Les appels coûteux sont donc de plus en
plus rares. On peut montrer que le nombre total de tours de boucle sur l’ensemble des 2n

appels est proportionnel au nombre d’appels, et non à la taille n des tableaux.
La complexité amortie s’applique précisément à ce type de situation : des algorithmes géné-
ralement peu coûteux, mais pouvant être très chers sur certaines entrées, à condition que ces
entrées défavorables apparaissent suffisamment rarement pour garantir une borne globale sur
une séquence d’exécutions.
L’analyse nécessite d’identifier un état évolutif (ici le tableau de booléens) et de comprendre
comment son évolution conditionne l’apparition des opérations coûteuses.

5.2 Méthode du potentiel.

La méthode du potentiel, aussi appelée méthode du physicien, formalise cette intuition en
associant à chaque état possible x de l’algorithme une valeur non négative Φ(x), appelée
potentiel, représentant un coût latent.

Potentiel
Une fonction de potentiel associe à chaque entrée possible x d’un algorithme une valeur
Φ(x) ≥ 0.

Les algorithmes à bonne complexité amortie alternent typiquement entre des opérations peu
coûteuses qui font croître le potentiel, et des opérations coûteuses associées à une forte dimi-
nution du potentiel. L’analyse amortie tient compte à la fois du coût réel d’une opération et
de la variation de potentiel qu’elle induit.

Coût amorti
Pour une opération transformant une entrée xe en une sortie xs, le coût amorti est

11

défini par
A = C + Φ(xs) − Φ(xe),

où C désigne le coût réel de l’opération.

Les notions d’entrée et de sortie recouvrent ici l’ensemble de l’état manipulé par l’algorithme :
paramètres, structures de données et état mémoire avant et après l’appel.

Theoreme de amortissement
Considérons une suite de n opérations consécutives

x0
op1−−→ x1

op2−−→ . . .
opn−−→ xn

telle que Φ(x0) = 0. En notant Ci le coût réel et Ai le coût amorti de opi, on a
n∑

i=1
Ci ≤

n∑
i=1

Ai.

La démonstration repose sur une somme télescopique faisant apparaître la variation globale
de potentiel. En particulier, si le coût amorti est borné par une constante k, alors toute
séquence de n opérations a un coût réel total inférieur ou égal à kn, ce qui garantit un coût
moyen constant.

5.3 Analyse amortie du compteur binaire.

Le coût réel d’un incrément du compteur binaire dépend du nombre k d’occurrences consé-
cutives de 1 à partir de l’indice 0. Pour un tableau c, un appel à incr(c,n) réalise :

— 2(k + 1) accès mémoire si k < n,
— 2k accès mémoire si k = n.

Pour l’analyse amortie, on introduit une fonction de potentiel mesurant la présence de 1 dans
le tableau, définie par

Φ(c) = 2 × (nombre de 1 dans c).

Lors d’un appel à incr, les k premiers 1 sont remplacés par des 0, puis, si k < n, le 0 suivant
devient 1. La variation de potentiel entre le tableau initial c et le tableau obtenu c’ est alors

Φ(c′) − Φ(c) =
{

−2k + 2 si k < n,
−2k si k = n.

Le coût amorti Ac d’un appel à incr sur un tableau ayant k occurrences consécutives de 1 à
partir de l’indice 0 vaut donc

Ac =
{

2(k + 1) − 2k + 2 = 4 si k < n,
2k − 2k = 0 si k = n.

En conclusion, la fonction d’incrément du compteur binaire possède une complexité amortie
bornée par 4. Toute séquence d’incréments partant du tableau nul effectue ainsi en moyenne
moins de 4 accès mémoire par incrément, malgré l’existence d’appels de coût linéaire en n.

12

6 Différence entre complexité moyenne et complexité
amortie

On peut trouver des similitudes entre les notions de complexité en moyenne et de complexité
amortie. Ces deux concepts sont cependant bien différents.

— Par définition, la complexité en moyenne est une moyenne : elle nous donne une com-
plexité supposée représentative du plus grand nombre d’entrées, mais sans apporter
aucune garantie sur la complexité d’une opération particulière, ni même d’une séquence
d’opérations particulières. Rien n’empêche qu’une séquence mal choisie d’invocations
d’un algorithme donné enchaîne les pires cas, au mépris de la valeur moyenne.

— La complexité amortie donne une borne garantie pour une séquence d’opérations : elle
ne dit rien de la complexité pour une entrée particulière, mais assure un équilibre à
toute séquence d’opérations, même la moins favorable. Cette notion présuppose que les
invocations successives de l’algorithme ne sont pas indépendantes les unes des autres,
et qu’un état ou une structure de données évolue avec chaque nouvelle invocation.

7 Complexité spatiale

La complexité spatiale d’un algorithme mesure la quantité de mémoire qu’il utilise. Comme
pour la complexité temporelle, on l’exprime généralement de façon asymptotique en fonction
de la taille de l’entrée, et l’on peut distinguer meilleurs cas, pires cas et complexité moyenne.
L’évaluation de la complexité spatiale consiste à identifier les données allouées en mémoire,
en se référant aux modèles d’exécution des langages OCaml et C.
On retient notamment les règles suivantes :

— chaque variable déclarée compte pour une unité ;
— chaque structure en C compte pour une constante, correspondant à la taille de sa

représentation mémoire, que l’on peut ramener à 1 lorsqu’on raisonne en ordre de
grandeur ;

— un tableau de taille n compte pour n fois la taille de ses éléments, ou simplement pour
n si ceux-ci ont une taille constante.

La somme des tailles des données allouées fournit une borne sur la complexité spatiale. Tou-
tefois, toutes les données ne sont pas nécessairement présentes simultanément en mémoire : la
complexité spatiale correspond donc uniquement à la quantité maximale de mémoire utilisée
à un instant donné.

Complexité spatiale

La complexité spatiale d’une exécution est la quantité maximale de mémoire occupée
au cours de cette exécution.

Dans de nombreux cas, cette quantité est facile à estimer. Par exemple, le tri par insertion
n’utilise que des variables locales et a donc une complexité spatiale constante, tandis que le
tri par fusion requiert un tableau auxiliaire de taille n et possède une complexité spatiale
linéaire.

13

7.1 Complexité spatiale cachée : la pile d’appels

Un algorithme peut présenter une complexité spatiale non négligeable sans allocation explicite
de mémoire, du fait de la pile d’appels récursifs.

Exemple

Dans le tri rapide, aucune structure supplémentaire n’est créée et chaque appel à
quickrec n’utilise que quelques variables locales. Cependant, lors des appels récur-
sifs emboîtés, les variables locales de tous les appels présents dans la pile coexistent en
mémoire et leurs coûts s’additionnent.
La complexité spatiale du tri rapide est donc proportionnelle à la profondeur maximale
de récursion : logarithmique en moyenne en la taille du tableau, mais linéaire dans le
pire cas. Avec une variante exploitant l’optimisation des appels terminaux, elle devient
logarithmique même dans le pire cas.

7.2 Compromis spatio-temporel

La complexité spatiale et la complexité temporelle étant distinctes, un algorithme peut pri-
vilégier l’une au détriment de l’autre.

Exemple

Considérons le calcul du coefficient binomial
(

n
k

)
à partir de la relation

(
n

k

)
=
(

n − 1
k

)
+
(

n − 1
k − 1

)
.

Cette formule conduit directement à l’implémentation récursive suivante.
1 int binom_rec(int k, int n) {
2 assert(0 <= k && k <= n);
3 if (k == 0 || k == n)
4 return 1;
5 else
6 return binom_rec(k-1, n-1) + binom_rec(k, n-1);
7 }

Cette fonction n’utilise aucune structure de données autre que la pile d’appels, mais
possède une complexité temporelle exponentielle en n, due aux recalculs répétés des
mêmes coefficients.

Mémorisation : dépenser de l’espace pour gagner du temps. La complexité
temporelle du calcul des coefficients binomiaux peut être fortement réduite en mémori-
sant les valeurs déjà calculées. La fonction binom_rec utilise un tableau bidimensionnel
pour stocker les coefficients connus, et ne calcule que ceux qui ne sont pas encore ren-
seignés.
Le calcul de

(
7
3

)
illustre cette approche : seuls les coefficients nécessaires du triangle de

Pascal sont effectivement évalués.

14

k = 0 1 2 3 4 5 6 7
n = 0 1

1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 −
5 − 5 10 10 − −
6 − − 15 20 − − −
7 − − − 35 − − − −

La fonction binom_memo initialise le tableau avant d’appeler binom_rec. Les coefficients
égaux à 1 ne sont pas stockés, car ils ne nécessitent aucun calcul. Cette mémorisation
évite tout recalcul : le nombre de coefficients

1 //Coefficients du binome dynamiques
2 int binom(int k, int n) {
3 int *row = calloc(n + 1, sizeof(int));
4 for (int i = 0; i <= n; i++) {
5 row[i] = 1;
6 for (int j = i - 1; j > 0; j--)
7 row[j] += row[j-1];
8 }
9 return row[k];

10 }

Savoir oublier. On peut encore ajuster le compromis espace–temps avec une troi-
sième version, qui calcule légèrement plus de coefficients que la précédente (tout en
restant sous une borne quadratique), mais se contente d’une complexité spatiale li-
néaire. L’idée consiste à calculer successivement les lignes du triangle de Pascal jusqu’à
la (n + 1)-ème, en ne conservant en mémoire que la dernière ligne calculée (programme
6.12).
Pour éviter d’écraser des valeurs encore nécessaires, la mise à jour se fait en partant de
la fin de la ligne. En reprenant n = 7, la ligne obtenue à la fin de l’étape i = 5 est la
suivante, les deux dernières cases étant déjà réservées mais encore inutilisées.

i = 5 1 5 10 10 5 1 − −

À l’étape suivante, pour i = 6, après deux itérations de la boucle interne, les cases
d’indices 4 à 6 ont été mises à jour. La prochaine opération consiste à mettre à jour
row[3] avec la somme row[2] + row[3].

j = 3
↓ i = 6 1 5 10 10 15 6 1 −

à traiter déjà à jour
Cette méthode calcule davantage de coefficients que binom_memo, puisqu’elle évalue
entièrement chaque ligne du triangle. La complexité temporelle reste néanmoins qua-
dratique en n, tandis que la complexité spatiale est réduite à un seul tableau de taille
proportionnelle à n.

15

8 Liens entre complexité spatiale et complexité tempo-
relle

Chaque accès à un mot mémoire étant une opération, la complexité temporelle est toujours
supérieure ou égale à la quantité de mémoire à laquelle un programme accède. Ceci per-
met d’établir un lien entre complexité spatiale et complexité temporelle, dont le détail est
cependant légèrement différent d’un langage à l’autre.

— En OCaml, la complexité spatiale est toujours bornée par la complexité temporelle. En
effet toute zone de mémoire utilisée en OCaml est initialisée, et le coût temporel de la
création d’une structure ne peut donc pas être inférieur à la taille de cette structure.

— En C, l’allocation de mémoire avec malloc n’initialise pas la zone de mémoire utilisée.
On peut donc avoir une complexité spatiale dépassant la complexité temporelle dans le
cas où l’on réserve avec malloc plus de mémoire que ce à quoi on accédera effectivement.

16

9 Tri rapide

Les boucles et la récursion ne sont pas deux techniques antagonistes. Il est tout à fait possible
d’utiliser les deux à l’intérieur d’une même fonction. On peut observer ceci par exemple avec
l’algorithme de tri rapide, pour l’analyse duquel nous allons devoir combiner les techniques
des sections précédentes.

Présentation de l’algorithme. Le cœur de l’algorithme de tri rapide est le suivant :
après avoir choisi un élément « pivot » on trie séparément les éléments inférieurs au pivot
et les éléments supérieurs au pivot. Dans le code C du programme 6.7 la fonction principale
quickrec trie le segment [l, r[du tableau a, c’est-à-dire entre les indices l (inclus) et r (exclu).

Le pivot est a[l], le premier élément du segment à trier. La première étape consiste à
réarranger les éléments en trois groupes : à gauche les éléments plus petits que le pivot, à
droite les éléments plus grands, et au milieu le pivot et les éventuels autres éléments qui lui
seraient égaux.

L’algorithme conclut alors en triant récursivement, et surtout séparément, les groupes gauche
et droit.
Le réarrangement en trois groupes est opéré par la boucle for. Durant l’exécution de cette
boucle les trois groupes se forment progressivement avec les éléments d’un quatrième groupe :
celui des éléments non encore répartis. Ce quatrième groupe est situé dans le tableau entre
le groupe des éléments égaux au pivot et celui des éléments plus grands que le pivot.

La boucle progresse en consultant le premier élément de la zone à répartir, et en l’interver-
tissant au besoin avec un autre élément pour le placer dans le bon groupe. Le segment [i, hi[
des éléments à répartir diminue à chaque tour, soit par incrément de i soit par décrément de
hi.

Listing 1 – Programme 6.7 – tri rapide d’un tableau
1 void swap(int a[], int i, int j) {
2 int tmp = a[i];
3 a[i] = a[j];
4 a[j] = tmp;
5 }
6

7 // trie uniquement a[l..r[
8 void quickrec(int a[], int l, int r) {
9 if (r - l <= 1) return;

10 int p = a[l], lo = l, hi = r;
11 for (int i = l+1; i < hi;) {
12 if (a[i] == p) { i++; }
13 else if (a[i] < p) { swap(a, i++, lo++); }
14 else /* a[i] > p */ { swap(a, i, --hi); }
15 }
16 quickrec(a, l, lo);
17 quickrec(a, hi, r);
18 }
19

20 void quicksort(int a[], int n) {

17

21 knuth_shuffle(a, n);
22 quickrec(a, 0, n);
23 }

