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Résumé

L’avènement des ordinateurs quantiques représente une menace majeure pour les sys-
tèmes cryptographiques classiques, comme l’a démontré l’algorithme de Shor, capable de
résoudre efficacement le problème de factorisation des entiers. Cela a accéléré le développe-
ment de la cryptographie post-quantique, dédiée à concevoir des primitives sécurisées contre
des adversaires quantiques. La cryptographie post-quantique se divise en plusieurs caté-
gories selon les problèmes sur lesquels repose la sécurité des systèmes. Parmi les approches
les plus prometteuses figurent les primitives basées sur les codes, dont la sécurité repose
sur la complexité de problèmes comme le décodage de syndrome (SDP), intraitable pour les
algorithmes classiques et quantiques.

Ce manuscrit définit et optimise des primitives cryptographiques basées sur les codes,
en particulier des signatures numériques dérivées de preuves de connaissance à divulgation
nulle via la transformation de Fiat-Shamir. Trois contributions principales sont présentées.

La première contribution introduit un protocole de preuve de connaissance à divulgation
nulle en cinq tours basé sur le problème RSD, utilisant une technique avancée de conversion
de témoin. Transformé en un schéma de signature numérique par l’heuristique de Fiat-
Shamir, adaptée à la sécurité post-quantique, il bénéficie d’une optimisation par une nouvelle
technique d’hypercube, atteignant des vitesses compétitives.

La deuxième contribution améliore l’efficacité du paradigmeMPC-in-the-Head en définis-
sant des fonctions pseudorandom puncturables multi-instances (PPRFs) conçues pour les
protocoles basés sur les codes. En remplaçant les approches à base de hachage par des
chiffrements en bloc à clé fixe, les PPRFs réduisent les temps de signature et de vérification
jusqu’à 55×, établissant de nouvelles références de performance.

La troisième contribution étend le schéma initial en un cadre de signature seuil, rel-
evant les défis de l’adaptation des schémas MPC pour une signature collaborative multi-
utilisateur. La méthodologie minimise le compromis entre la taille des signatures et le
nombre d’utilisateurs, surpassant les techniques naïves. Appliquée au schéma basé sur les
codes, elle aboutit à une solution de signature seuil pratique et efficace.

En conclusion, ce manuscrit propose des avancées majeures en cryptographie post-
quantique basée sur les codes, en relevant les défis de sécurité et d’efficacité. Alliant con-
ception théorique rigoureuse et pertinence pratique, ces contributions s’alignent sur les
objectifs du NIST et répondent aux besoins émergents tels que la blockchain et les systèmes
décentralisés.

Mots-clés: Cryptographie à base de codes, Conception de primitives symétriques, Cryp-
tographie post-quantique, Schémas de signature, MPC-in-the-Head, Signatures seuil, Signa-
ture post-quantique, Signature à base de codes, Décodage de syndrome régulier, Preuve à
divulgation nulle de connaissance.
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Abstract

The advent of quantum computers poses a critical threat to classical cryptographic
systems, as demonstrated by Shor’s algorithm, which efficiently solves the integer factor-
ization problem. This has accelerated the development of post-quantum cryptography, a
field dedicated to designing cryptographic primitives secure against quantum adversaries.
Post-quantum cryptography is categorized into distinct areas based on the problems under-
pinning the security of its systems. Among the most promising approaches are code-based
primitives, whose security relies on the complexity of coding theory problems such as
the syndrome decoding problem (SDP), which remains intractable for both classical and
quantum algorithms.

This manuscript focuses on defining and optimizing code-based cryptographic prim-
itives, with a particular emphasis on digital signatures derived through the Fiat-Shamir
transformation of zero-knowledge proofs of knowledge. It presents three main contributions.

The first contribution introduces a five-round zero-knowledge proof of knowledge
protocol based on the RSD problem, employing an advanced witness conversion technique.
The protocol is then transformed into a digital signature scheme using the Fiat-Shamir
heuristic, adapted for post-quantum security. Performance is further optimized through a
novel hypercube technique, achieving competitive speeds relative to existing schemes.

The second contribution focuses on improving the efficiency of the MPC-in-the-Head
paradigm by defining multi-instance puncturable pseudorandom functions (PPRFs) specifi-
cally designed for code-based protocols: replacing traditional hash-based approaches with
fixed-key block ciphers, the proposed PPRFs reduce signing and verification times by up to
55×, establishing new performance benchmarks for MPC-in-the-Head-based schemes.

The third contribution extends the initial digital signature scheme into a threshold
signature framework, addressing the challenges of efficiently adapting MPC-based schemes
for multi-user collaborative signing. The proposed methodology minimizes the trade-off
between signature size and user count, outperforming naive concatenation techniques.
Applied to the earlier code-based signature scheme, this approach results in a practical and
efficient threshold signature solution.

In conclusion, this manuscript presents significant advancements in code-based post-
quantum cryptography by addressing fundamental challenges in security and efficiency.
Combining rigorous theoretical design with practical relevance, the contributions align
with the goals of the NIST standardization process and address emerging needs such as
blockchain and decentralized systems.

Keywords: Code-based cryptography, Design of Symmetric Primitives, Post-Quantum
Cryptography, Signature Schemes, MPC-in-the-Head, Threshold signatures,Post-quantum
Signature, Code-based signature, Regular syndrome decoding, Zero-knowledge Proof.
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Vue d’ensemble de la Cryptographie Post-Quantique

L’éventuelle arrivée de l’informatique quantique a complètement transformé le monde de la
cryptographie : les systèmes cryptographiques classiques tels que RSA, DSA et ECC, qui
reposent sur des problèmes comme la factorisation d’entiers et les logarithmes discrets, sont
confrontés à une vulnérabilité fondamentale. Ces problèmes, considérés comme intracta-
bles sur des machines classiques, peuvent être résolus efficacement à l’aide d’algorithmes
quantiques comme l’algorithme de Shor [Sho97]. Par conséquent, les fondements de ces
protocoles cryptographiques sont menacés, puisqu’un ordinateur quantique est capable de
les résoudre en temps polynomial, rendant ainsi leur sécurité obsolète.

En réponse à ce défi, la cryptographie post-quantique (PQC) a émergé comme un domaine
de recherche essentiel. L’objectif de la PQC est de développer des schémas cryptographiques
qui restent sécurisés même face à des attaques quantiques, tout enmaintenant leur robustesse
dans des environnements classiques. Ce domaine explore diverses structures mathématiques
censées résister aux calculs quantiques. Selon le problème mathématique sur lequel repose
la sécurité, la cryptographie post-quantique se divise en :

• la cryptographie à base de treillis, avec des hypothèses notables telles que NTRU et
Learning with Errors (LWE) ;

• la cryptographiemultivariée (MQ), qui exploite la difficulté de la résolution de systèmes
d’équations quadratiques sur des corps finis ;

• la cryptographie à base de fonctions de hachage, illustrée par les schémas de signature
de Merkle ;

• la cryptographie à base de codes, incluant le cryptosystème de McEliece et les schémas
reposant sur le problème de décodage de syndrome (SDP).
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Parmi ces domaines, cette thèse se concentre sur la cryptographie à base de codes, un
secteur bien établi de la sécurité post-quantique qui offre une combinaison prometteuse
d’efficacité et de sécurité, grâce à la difficulté des problèmes sous-jacents et à la simplicité
de leur structure algébrique par rapport à d’autres approches. Au cœur de ce domaine se
trouve le syndrome decoding problem (SDP), qui consiste à trouver un vecteur de faible poids
de Hamming satisfaisant une équation linéaire définie par une matrice binaire. Sa difficulté
est bien documentée et résiste tant aux algorithmes classiques que quantiques [Pra62;
FJR22; Ste94a; CDM+22; BJM+12; Ber10; KT17; BJM+12; FS09], en faisant un pilier de la
cryptographie moderne à base de codes.

Motivation pour la Cryptographie à Base de Codes

L’orientation vers la cryptographie à base de codes en cryptographie post-quantique est
motivée par plusieurs raisons. Il ne s’agit pas seulement de la solidité de ses garanties de
sécurité, mais aussi de son utilité pratique dans des systèmes cryptographiques réels : les
schémas à base de codes sont étudiés depuis des décennies, et leur sécurité est solidement
établie, reposant sur des problèmesmathématiques difficiles comme le décodage de syndrome.
Ils offrent un équilibre solide entre rigueur théorique et implémentation pratique, ce qui en
fait une option fiable pour construire des systèmes sécurisés dans un monde post-quantique,
particulièrement lorsque la sécurité à long terme est une priorité.

Les facteurs les plus importants à prendre en compte lors du choix de la cryptographie à
base de codes sont :

1. Fondement de sécurité établi : les problèmes cryptographiques à base de codes, en
particulier le problème de décodage de syndrome, sont étudiés depuis plus de quarante
ans. La proposition originelle du cryptosystème de McEliece en 1978 [McE78] a
marqué le début d’un corpus de recherches solide.

2. Diversification et bénéfices pratiques : même si la cryptographie à base de codes
est antérieure à la cryptographie à base de treillis, cette dernière a gagné beaucoup
d’attention au cours des dernières décennies, de nombreux protocoles ayant été
développés. Cependant, comme on peut facilement l’imaginer, s’appuyer sur une seule
hypothèse est risqué en cas d’attaques inattendues : diversifier les primitives, comme
l’a également encouragé le NIST, est crucial pour une meilleure sécurité. Parmi toutes
les possibilités, la cryptographie à base de codes se distingue grâce à des constructions
algébriques beaucoup plus simples —surtout surF2—, la rendant plus difficile à attaquer
via des méthodes algébriques complexes et, en même temps, plus facile à implémenter
sur des dispositifs de base, ce qui la rend à la fois pratique et polyvalente.

3. Taille de signature efficace : historiquement, les schémas cryptographiques à base de
codes ont été associés à de grandes clefs publiques, mais ils ont connu des améliorations
notables en termes de taille de signature. Des avancées récentes [FJR22] ont donné
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lieu à des schémas de signature plus compacts et efficaces, faisant des signatures à
base de codes une option solide pour un déploiement réel dans des environnements
post-quantiques.

Le Syndrome Decoding Problem (SDP) peut être décrit comme suit : étant donnée une
matrice binaire aléatoire H ∈ Fk×K

2 et un vecteur cible y ∈ Fk
2 , l’objectif est de trouver un

vecteur x ∈ FK
2 de poids de Hamming w tel que H · x = y. La difficulté de calcul de ce

problème constitue un élément clé pour construire des systèmes cryptographiques sécurisés,
en particulier des schémas de signature post-quantiques [FJR22]. En particulier, l’application
du problème de décodage de syndrome à la construction de signatures numériques a été
explorée via différentes méthodes.

Signatures Numériques dans un Monde Post-Quantique

Les signatures numériques sont l’une des primitives cryptographiques les plus fondamentales,
fournissant des garanties d’authenticité, d’intégrité et de non-répudiation. Dans un monde
post-quantique, la construction de schémas de signature sécurisés représente un défi majeur,
car les ordinateurs quantiques menacent directement les schémas de signature classiques,
comme ceux basés sur la cryptographie à courbes elliptiques (ECC), étant donné que les
ordinateurs quantiques peuvent résoudre efficacement les problèmes mathématiques sous-
jacents à ces schémas classiques, tels que le logarithme discret. Cela motive la nécessité de
signatures numériques post-quantiques qui restent sécurisées même face à des adversaires
quantiques.

Les signatures basées sur le problème de décodage de syndrome offrent une solution
prometteuse. En s’appuyant sur l’intractabilité du SDP, ces signatures sont intrinsèque-
ment résistantes aux attaques quantiques. Une technique bien connue pour construire
des signatures numériques sécurisées est l’heuristique de Fiat-Shamir [FS87], qui trans-
forme les protocoles interactifs à jetons publics, tels que les preuves à divulgation nulle de
connaissance, en schémas de signature non interactifs. Cette transformation remplace le
défi aléatoire du vérificateur par un hachage déterministe du message, permettant ainsi de
construire des signatures sans nécessiter d’interaction entre le prouveur et le vérificateur.

L’utilisation de la transformation de Fiat-Shamir a connu un succès particulier en cryp-
tographie post-quantique. Dans le cadre de ce travail, cette transformation convertit une
preuve à divulgation nulle de connaissance en 5 tours basée sur le problème de décodage de
syndrome en un schéma de signature sûr et efficace.

L’un des principaux défis dans la conception de signatures post-quantiques est de trouver
un équilibre entre sécurité, efficacité et taille de la signature. Les premiers schémas, tels que
ceux dérivés de la preuve à divulgation nulle de Stern pour le décodage de syndrome [Ste94b],
souffraient de tailles de signatures importantes dues à la nécessité de multiples répétitions
pour réduire l’erreur de solidité. Pour atteindre une erreur de solidité de 2−128, le protocole
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de Stern requiert un nombre significatif de répétitions, ce qui entraîne des surcoûts de
communication élevés.

Des avancées récentes [FJR22; KKW18; ZCD+20], notamment grâce à l’utilisation
de techniques de calcul multipartite (MPC) telles que MPC-in-the-Head (MPCitH), ont
résolu ces problèmes en réduisant la complexité de communication de la preuve tout en
maintenant de fortes garanties de sécurité. Les schémas de signature basés sur MPCitH
obtiennent des performances compétitives tant en termes de sécurité que d’efficacité, en
faisant une option viable pour les signatures post-quantiques. Dans cette thèse, la conception
et l’implémentation de schémas de signature efficaces à base de codes sont étudiées, en
mettant l’accent sur l’utilisation de fonctions pseudorandomes puncturables (PPRF) et
l’optimisation des protocoles MPC sous-jacents pour minimiser la taille des signatures et le
coût de calcul.

Preuves àDivulgationNulle deConnaissance (Zero-Knowledge
Proofs)

Les preuves à divulgation nulle de connaissance (ZKPs) sont des protocoles cryptographiques
qui permettent à un prouveur de démontrer qu’il possède une solution à un problème, sans
révéler la solution elle-même. Une preuve à divulgation nulle de connaissance doit satisfaire
trois propriétés clés :

• complétude : garantit qu’un prouveur honnête peut toujours convaincre le vérificateur
de la véracité de l’énoncé ;

• solidité : assure qu’aucun prouveur malhonnête ne peut convaincre le vérificateur
d’un énoncé faux avec une probabilité non négligeable ;

• divulgation nulle de connaissance : garantit que le vérificateur n’apprend rien au-delà
de la validité de l’énoncé.

Dans le domaine de la cryptographie à base de codes, la première preuve à divulgation
nulle de connaissance pour le problème de décodage de syndrome a été introduite par
Stern [Ste94b]. Ce protocole permet à un prouveur de convaincre un vérificateur qu’il
possède un témoin valide —c’est-à-dire une solution au problème de décodage de syndrome—
sans le révéler. Malgré son caractère novateur, le protocole de Stern souffre d’une forte
erreur de solidité : un prouveur malhonnête peut convaincre avec succès le vérificateur
avec une probabilité de 2/3 sans posséder la solution correcte. Pour atteindre une erreur de
solidité de 2−128, le protocole de Stern doit être répété de nombreuses fois, ce qui accroît
considérablement le coût de communication. Par exemple, utiliser le protocole de Stern pour
signer un seul message avec 128 tours engendrerait un coût de communication dépassant 1
MB, car chaque tour requiert la transmission de multiples engagements et réponses [Ste94a;
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DFG+14]. À titre de comparaison, les schémas modernes comme Falcon atteignent des
niveaux de sécurité similaires avec des tailles de signature d’environ 666 octets au niveau
de sécurité NIST 1 et 1 280 octets au niveau 5 [FGP+18]. Cette différence notable illustre
l’efficacité des schémas modernes en termes de coûts de communication comparés au
protocole de Stern.

Le Rôle du Paradigme MPC-in-the-Head

4.4 joue un rôle déterminant dans la construction de protocoles cryptographiques post-
quantiques. Initialement introduit par Ishai, Kushilevitz, Ostrovsky et Sahai [IKO+07],
MPCitH permet au prouveur de simuler l’exécution d’un protocole de calcul multipartite
(MPC) dans sa tête, en s’engageant sur les vues de plusieurs parties virtuelles participant
au calcul. Le prouveur peut ensuite révéler sélectivement certaines parties de ces vues au
vérificateur, ce qui permet à ce dernier de vérifier l’exactitude du calcul sans interaction
directe de toutes les parties impliquées.

MPCitH s’est avéré particulièrement efficace dans la construction de signatures numériques
post-quantiques : en s’engageant sur l’intégralité du calcul dans sa tête, le prouveur peut
produire une preuve compacte de l’exactitude, nécessitant bien moins de communication
que les protocoles à divulgation nulle de connaissance traditionnels. Cette réduction de la
complexité de communication est d’autant plus cruciale dans un cadre post-quantique, où la
taille des clefs publiques et des signatures pose souvent des défis pratiques.

Cette approche a été encore améliorée en combinant MPCitH avec des fonctions pseudo-
randomes puncturables (PPRF), comme le soulignent Katz, Kolesnikov et Wang [KKW18],
démontrant comment ces techniques peuvent conduire à des preuves à divulgation nulle
de connaissance non interactives plus performantes. Les PPRF permettent au prouveur de
révéler sélectivement certaines parties du calcul tout en gardant d’autres parties cachées.
Cette révélation sélective est essentielle pour réduire le surcoût de communication associé
aux preuves à divulgation nulle, car elle permet au prouveur d’ouvrir seulement les portions
nécessaires du calcul pour la vérification. La combinaison de MPCitH et des PPRF a con-
duit au développement de schémas de signature post-quantiques très efficaces, offrant un
compromis entre sécurité, efficacité et taille de la signature [FJR22].

Le présent manuscrit explore l’utilisation de MPCitH comme fondement pour construire
des schémas de signature numérique post-quantiques efficaces, en optimisant les protocoles
MPC sous-jacents et en intégrant des PPRF, permettant ainsi de réaliser des schémas de
signature à la fois sûrs contre les adversaires quantiques et pratiques pour une utilisation
réelle. La conception de ces schémas répond aux défis clés de la scalabilité, de l’efficacité
de communication et de la sécurité, en faisant une option solide pour des applications
cryptographiques post-quantiques.
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Contributions de cette Thèse

Cette thèse apporte plusieurs contributions à la cryptographie post-quantique, en se concen-
trant sur les schémas de signature numérique construits à partir du problème de décodage
de syndrome et du paradigme MPC-in-the-Head (MPCitH). Le travail présenté ici est le fruit
de mes recherches de doctorat, au cours desquelles j’ai publié trois articles, chacun formant
la base de l’un des chapitres principaux de la thèse.

Voici les principales contributions de la thèse :

• Deux nouveaux schémas de signature post-quantiques : la première avancée majeure
est le développement de deux nouveaux schémas de signature basés sur le problème
de décodage de syndrome classique. Les deux schémas utilisent le paradigme MPCitH
pour combiner une sécurité élevée avec une efficacité pratique. Le premier schéma,
expliqué au Chapitre 3, a été présenté dans [CCJ23], un article co-rédigé avec Geoffroy
Couteau et Antoine Joux, présenté à Eurocrypt23. Il introduit une nouvelle manière
d’utiliserMPCitH avec le décodage de syndrome pour obtenir des signatures compactes
et réduire les coûts de communication. Le second schéma, construit sur la base du
premier, améliore encore les performances et corrige certaines limites de la conception
initiale. Il constitue une partie de [BCC+24], un article co-rédigé avec Dung Bui,
Geoffroy Couteau, Dahmun Goudarzi et Antoine Joux, présenté à Asiacrypt24.

• Fonction pseudorandome puncturable (PPRF) améliorée : le Chapitre 4 se concentre
sur l’amélioration de l’efficacité des signatures basées sur MPCitH, comme présenté
dans [BCC+24]. Ce travail optimise les PPRF pour obtenir une signature plus rapide et
réduire la communication, aspects cruciaux pour la mise en pratique de ces schémas
dans des scénarios réels. Ces améliorations démontrent l’impact significatif de la
nouvelle conception sur l’utilisabilité de toutes les signatures reposant sur MPCitH.

• Schéma de signature de seuil : la contribution finale [CC24], décrite au Chapitre 5,
étend les travaux des signatures individuelles aux signatures de seuil. Cela permet
à plusieurs utilisateurs de signer un message collectivement de manière sécurisée
et distribuée, ce qui est particulièrement utile dans des applications nécessitant une
confiance partagée. Ce travail est une extension naturelle des schémas précédents et
fait actuellement l’objet d’une soumission.

Ces contributions répondent à certains des plus grands défis de la conception de schémas
de signature post-quantiques, notamment en matière de passage à l’échelle, d’efficacité et
de sécurité. Chaque chapitre s’appuie sur le précédent, illustrant comment la recherche a
progressivement évolué pendant mon doctorat.
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Overview of Post-Quantum Cryptography

The possible advent of quantum computing has completely changed the world of cryptogra-
phy: classical cryptographic systems like RSA, DSA, and ECC, which rely on problems such
as integer factorization and discrete logarithms, face a fundamental vulnerability. These
problems, considered computationally intractable for classical machines, can be efficiently
solved using quantum algorithms like Shor’s algorithm [Sho97]. As a result, the foundations
of these cryptographic protocols are under threat, as quantum computers can solve them in
polynomial time, rendering their security obsolete.

In response to this challenge, post-quantum cryptography (PQC) has emerged as a critical
area of study. The goal of PQC is to develop cryptographic schemes that remain secure
even against quantum attacks while maintaining their robustness in classical environments.
This field explores various mathematical structures that are supposed to be resistant to
quantum computations. Depending on the mathematical problem on which security relies,
post-quantum cryptography can be divided into:

• Lattice-based cryptography, with notable assumptions like NTRU and Learning with
Errors (LWE);

• Multivariate quadratic (MQ) cryptography, which exploits the difficulty of solving
systems of quadratic equations over finite fields;

• Hash-based cryptography, exemplified by Merkle signature schemes;

• Code-based cryptography, including the McEliece cryptosystem and schemes relying
on the syndrome decoding problem (SDP).

Among these, the thesis focuses on code-based cryptography, a well-established area in
post-quantum security that offers a promising combination of efficiency and security, due
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to the hardness of the underlying problems and the simplicity of their algebraic structure
compared to other approaches. Central in this field is the syndrome decoding problem (SDP),
which involves finding a vector with a small Hamming weight that satisfies a linear equation
defined by a binary matrix. Its hardness has been well-documented, resisting both classical
and quantum algorithms [Pra62; FJR22; Ste94a; CDM+22; BJM+12; Ber10; KT17; BJM+12;
FS09], making it a cornerstone of modern code-based cryptography.

Motivation for Code-Based Cryptography

The focus on code-based cryptography in post-quantum cryptography is motivated by
several reasons. It is not just about its strong security guarantees but also its practical use
in real cryptographic systems: code-based schemes have been studied for decades, and
their security is well-established, relying on hard mathematical problems like syndrome
decoding. They offer a solid balance between theoretical rigor and practical implementation
and this makes them a reliable option for building secure systems in a post-quantum world,
especially when long-term security is a priority. The most important factors to consider
when choosing code-based cryptography are:

1. Established Security Foundation: code-based cryptographic problems, particularly the
syndrome decoding problem, have been extensively studied for over four decades. The
original proposal of the McEliece cryptosystem in 1978 [McE78] marked the beginning
of a well-established body of research.

2. Diversification and Practical Benefits: even if code-based cryptography is chronologi-
cally older than Lattice-based cryptography, the latter has gained a lot of attention in
the last decades, with many protocols being developed. However, as one can easily
imagine, relying on just one assumption is risky in case of unexpected attacks: diver-
sifying primitives, as NIST has also encouraged, is crucial for better security. Among
all the possibilities, code-based cryptography stands out because it uses much simpler
algebraic constructions –especially over F2–, making it harder to attack with complex
algebraic methods and at the same time, easier to implement on basic devices, which
makes it both practical and versatile.

3. Efficient Signature Size: code-based cryptographic schemes, while historically associ-
ated with large public keys, have seen significant improvements in terms of signature
size. Recent advancements [FJR22], have led to more compact and efficient signature
schemes, making code-based signatures a strong candidate for real-world deployment
in post-quantum environments.

The Syndrome Decoding Problem (SDP) can be described as follows: given a random
binary matrixH ∈ Fk×K

2 and a target vector y ∈ Fk
2 , the objective is to find a vector x ∈ FK

2

of Hamming weight w such that H · x = y. The computational hardness of this problem is
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a key component in constructing secure cryptographic systems, particularly post-quantum
digital signature schemes [FJR22]. In particular, the application of the syndrome decoding
problem in constructing digital signatures has been explored through various methodologies.

Digital Signatures in a Post-QuantumWorld

Digital signatures are one of the most fundamental cryptographic primitives, providing
assurances of authenticity, integrity, and non-repudiation. In the post-quantum world,
building secure digital signature schemes is an important challenge, as quantum computers
pose a direct threat to classical signature schemes, such as those based on elliptic curve cryp-
tography (ECC), since quantum computers can efficiently solve the mathematical problems
that underlie these classical schemes, such as discrete logarithms. This motivates the need
for post-quantum digital signatures that remain secure even in the presence of quantum
adversaries.

Signatures based on the syndrome decoding problem, offer a promising solution. By
leveraging the intractability of SDP, these signatures are inherently resistant to quantum
attacks. A well-known technique for constructing secure digital signatures is through
the Fiat-Shamir heuristic [FS87], which transforms interactive public-coin protocols, such
as zero-knowledge proofs of knowledge, into non-interactive signature schemes. This
transformation replaces the verifier’s random challenge with a deterministic hash of the
message, allowing for the construction of signatures without requiring interaction between
the prover and the verifier. The use of the Fiat-Shamir transformation has been particularly
successful in post-quantum cryptography. In the context of this work, the transformation
converts a 5-round zero-knowledge proof of knowledge based on the syndrome decoding
problem into a secure and efficient signature scheme.

One of the key challenges in designing post-quantum signatures is balancing security,
efficiency, and signature size. Early schemes, such as those derived from Stern’s zero-
knowledge proof for syndrome decoding [Ste94b], suffered from large signature sizes due
to the need for multiple repetitions to reduce the soundness error. To achieve a soundness
error of 2−128, Stern’s protocol required a significant number of repetitions, resulting in
substantial communication overheads.

Recent advancements [FJR22; KKW18; ZCD+20], particularly through the use of multi-
party computation (MPC) techniques such as MPC-in-the-Head (MPCitH), have addressed
these issues by reducing the communication complexity of the proof while maintaining
strong security guarantees. MPCitH-based signature schemes achieve competitive perfor-
mance in terms of both security and efficiency, making them a viable option for post-quantum
digital signatures. In this thesis, the design and implementation of efficient code-based
signature schemes are explored, with a focus on utilizing puncturable pseudorandom func-
tions (PPRFs) and optimizing the underlying MPC protocols to minimize signature size and
computational cost.
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Zero-Knowledge Proofs

Zero-knowledge proofs (ZKPs) are cryptographic protocols that allow a prover to demon-
strate knowledge of a solution to a problem without revealing the solution itself. A zero-
knowledge proof must satisfy three key properties:

• completeness: ensures that an honest prover can always convince the verifier of the
truth of the statement;

• soundness: guarantees that no dishonest prover can convince the verifier of a false
statement with non-negligible probability;

• zero-knowledge: ensures that the verifier learns nothing beyond the validity of the
statement.

In the domain of code-based cryptography, the first zero-knowledge proof of knowledge
for the syndrome decoding problem was introduced by Stern [Ste94b]. This protocol enables
a prover to convince a verifier that they possess a valid witness –i.e., a solution to the
syndrome decoding problem– without revealing it. Despite its innovation, Stern’s protocol
suffers from a high soundness error: a dishonest prover can successfully convince the verifier
with a probability of 2/3 without possessing the correct solution. To achieve a soundness
error of 2−128, Stern’s protocol must be repeated multiple times, leading to a significant
increase in communication overhead. For instance, using Stern’s protocol to sign a single
message with 128 rounds would result in a communication cost exceeding 1 MB, as each
round requires transmitting multiple commitments and responses [Ste94a; DFG+14]. In
contrast, modern schemes like Falcon achieve comparable levels of security with signature
sizes of approximately 666 bytes at NIST security level 1 and 1,280 bytes at level 5 [FGP+18].
This stark difference highlights the efficiency of modern schemes in terms of communication
overhead compared to Stern’s protocol.

The Role of the MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) 4.4 paradigm is a critical innovation in the construction
of post-quantum cryptographic protocols. Originally introduced by Ishai, Kushilevitz,
Ostrovsky, and Sahai [IKO+07], MPCitH allows the prover to simulate the execution of a
multi-party computation (MPC) protocol in his head, committing to the views of several
virtual parties that participate in the computation. The prover can then selectively reveal
certain parts of these views to the verifier, enabling the verifier to check the correctness of
the computation without the need for direct interaction between all parties involved.

MPCitH has proven to be particularly effective in the construction of post-quantum
digital signatures: by committing to the entire computation in his head, the prover can
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produce a compact proof of correctness that requires significantly less communication
than traditional zero-knowledge protocols. This reduction in communication complexity is
especially important in post-quantum settings, where the size of public keys and signatures
often poses practical challenges.

This approach was further enhanced by combining MPCitH with puncturable pseudoran-
dom functions (PPRFs), as highlighted in the work of Katz, Kolesnikov, and Wang [KKW18],
which demonstrated how these techniques can lead to improved non-interactive zero-
knowledge proofs. PPRFs allow the prover to selectively reveal certain parts of the compu-
tation while keeping other parts hidden. This selective revelation is critical in reducing the
communication overhead associated with zero-knowledge proofs, as it enables the prover to
open only the necessary portions of the computation for verification. The combination of
MPCitH and PPRFs has led to the development of highly efficient post-quantum signature
schemes, which offer a balance between security, efficiency, and signature size [FJR22].

This manuscript explores the use of MPCitH as the foundation for constructing efficient
post-quantum digital signature schemes, by optimizing the underlying MPC protocols and
integrating PPRFs, and making it possible to achieve signature schemes that are both secure
against quantum adversaries and practical for deployment in real-world cryptographic
systems. The design of these schemes addresses the key challenges of scalability, com-
munication efficiency, and security, making them a strong candidate for post-quantum
cryptographic applications.

Contributions of this Thesis

This thesis makes several contributions to post-quantum cryptography, focusing on digital
signature schemes built on the syndrome decoding problem and the MPC-in-the-Head
(MPCitH) paradigm. The work presented here is the result of my PhD research, during
which I published three articles, each of which forms the basis for one of the main chapters
of the thesis.

Here are the main contributions of the thesis:

• Two New Post-Quantum Signature Schemes: the first big step was the development
of two new signature schemes based on the regular syndrome decoding problem.
Both schemes use the MPCitH paradigm to combine strong security with practical
efficiency. The first scheme, explained in Chapter 3, was introduced in [CCJ23], a
paper co-authored with Geoffroy Couteau and Antoine Joux, presented at Eurocrypt23.
It introduced a new way of using MPCitH with syndrome decoding to achieve compact
signatures and reduce communication costs. The second scheme, built on the first
one, improves the performance further and addresses some of the limitations of the
initial design. It represents a part of [BCC+24], a paper co-authored with Dung Bui,
Geoffroy Couteau, Dahmun Goudarzi, and Antoine Joux, presented at Asiacrypt24.
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• Improved Puncturable Pseudorandom Function (PPRF): Chapter 4 focuses on improv-
ing the efficiency of MPCitH-based signatures, as presented in [BCC+24]. The work
enhances PPRFs to achieve faster signing and reduced communication overhead, both
of which are critical for the practicality of these schemes in real-world scenarios.
These improvements demonstrate the significant impact of the new design on the
usability of all MPCitH-based signatures.

• Threshold Signature Scheme: the final contribution [CC24], described in Chapter
5, extends the work from individual signatures to threshold signatures. This allows
multiple users to sign a message together in a secure and distributed way, which is
particularly useful in applications that require collective trust. This work is a natural
extension of the previous schemes and it is currently under submission.

These contributions address some of the biggest challenges in designing post-quantum
signature schemes, including scalability, efficiency, and security. Each chapter builds on the
previous one, showing how the research evolved step by step throughout my PhD.

My Papers

[BCC+24] Dung Bui, Eliana Carozza, Geoffroy Couteau, Dahmun Goudarzi, and Antoine
Joux. “Short Signatures from Regular Syndrome Decoding, Revisited”. In:
ASIACRYPT 2024 (to appear). 2024. url: https://eprint.iacr.org/
2024/252.

[CC24] Eliana Carozza and Geoffroy Couteau. On Threshold Signatures from MPC-in-

the-Head. Cryptology ePrint Archive, Paper 2024/1897. 2024. url: https:
//eprint.iacr.org/2024/1897.

[CCJ23] Eliana Carozza, Geoffroy Couteau, and Antoine Joux. “Short Signatures from
Regular Syndrome Decoding in the Head”. In: EUROCRYPT 2023, Part V. Ed. by
Carmit Hazay and Martijn Stam. Vol. 14008. LNCS. Springer, Heidelberg, Apr.
2023, pp. 532–563. doi: 10.1007/978-3-031-30589-4_19.
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This chapter provides the necessary background for the research presented in this thesis.
It starts with the basic mathematical notation used throughout the manuscript to ensure
clarity and consistency. Then other key concepts are described, including computational
and security assumptions, probability models, and cryptographic primitives that form the
basis for the thesis. The last part of this chapter is dedicated to code-based cryptography,
especially the syndrome decoding problem and its regular variant which are at the core of
the presented works.

Contents
3.1 Mathematical Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Algorithmic and Computational Models . . . . . . . . . . . . . . . . 18

3.3 Principles of Security and Probability . . . . . . . . . . . . . . . . . . 20

3.4 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Hash function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3 Pseudorandom Generator (PRG) . . . . . . . . . . . . . . . . . . . 25

3.4.4 Pseudorandom Functions (PRF) . . . . . . . . . . . . . . . . . . . 26

3.4.5 Puncturable Pseudorandom Functions (PPRF) . . . . . . . . . . . 28

3.4.6 Pseudorandom correlation generators . . . . . . . . . . . . . . . 30

3.4.7 Idealized Models in Cryptography . . . . . . . . . . . . . . . . . 32

3.5 Code-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5.1 Syndrome Decoding Assumption . . . . . . . . . . . . . . . . . . 34

15



Chapter 3 Preliminaries

3

3.1 Mathematical Notation

Given a set S, s←$ S indicates that s is uniformly sampled from S. Given an integer n ∈ N,
[n] denotes the set {1, · · · , n}. For bitstrings, {0, 1}k denotes the set of all bitstrings of
length k, and {0, 1}∗ denotes the set of all bitstrings of any length.

Modulo. Let x ∈ Z and k > 0 be a positive integer. The reduction of xmodulo k, denoted
as x mod k, is the remainder of the division of x by k. The set Zk = {0, 1, · · · , k − 1}
represents all integers modulo k, with addition and multiplication defined modulo k. Based
on this, the ring of integers modulo k is denoted as (Zk,+, ·), and the group of invertible
integers modulo k is denoted as (Z∗k, ·). For a general k, the size of this group is given
by Euler’s totient function φ(k), i.e. the number of integers n such that 1 ≤ n ≤ k and
gcd(k, n) = 1, where gcd is the greatest common divisor. If k is a prime number, Zk forms
a field, and Z∗k = Zk \ {0}. Equality modulo k is expressed as a = b mod k.

Vectors andmatrices. Bold lowercase is used for vectors and uppercase for matrices. The
notationA||B denotes the horizontal concatenation ofmatricesA,B, andA//B denotes their
vertical concatenation. The symbol Idn denotes the n×n identity matrix. By default, vectors
are always considered as columns. Given a vector v, it is often written as v = (v1, · · · ,vn)
to indicate that v is a (vertical) concatenation of n subvectors vi. This slight abuse of
notation avoids the (more precise, but cumbersome) notation v = (v⊺

1, · · · ,v⊺
n)

⊺. Given
u,v ∈ {0, 1}n, u⊕v denotes the bitwise-XOR of u and v, andHW(u) denotes the Hamming
weight of u, i.e., its number of nonzero entries.

Compact and expanded forms. Given two integers n,m and an index i ∈ [n], ei ∈ Fn
2

denotes the length-n unit F2-vector whose i-th entry is 1. Given w indices (i1, · · · , iw) ∈
[n]w, the previous notation is extended to ei = (ei1 , · · · , eiw), the concatenation of w unit
vectors. Noise vectors are typically manipulated in compact form, i.e., as elements (i1, · · · , iw)
of [m]w, where each entry ij ∈ [m] indicates the position of the 1 in the j-th length-bs unit
vector. The mapping Expand is used to denote the transformation which, given a noise
vector x = (x1, · · · , xw) ∈ [m]w, outputs the vector ex = (ex1 , · · · , exw) ∈ FK

2 . The vector
ex is called the expanded form of x.

Permutations. The set Perm(n) denotes all permutations of [n]. In this manuscript,
permutations over [n] are typically used to shuffle the entries of a length-n vector or to
shuffle the blocks of a vector which is the concatenation of n blocks. For example, given
two integers n,m, a vector v ∈ [m]n and a permutation π : [n] 7→ [n], π(v) denotes the
vector (vπ(1), vπ(2), · · · , vπ(n)). If v is the concatenation of n subvectors (v1, · · · ,vn), then
π(v) denotes the vector (vπ(1), · · · ,vπ(n)).
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Code parameters. A linear code of length n and dimension k over a finite field Fq is
defined as a k-dimensional subspace of Fn

q .

Definition 3.1.1. For a linear code C over a finite field, a parity-check matrix H is defined

such that a vector c is a codeword in C if and only if HcT = 0. In other words, H is a matrix

whose null space corresponds to the code C . The rows of H represent the coefficients of the

parity-check equations that define the code.

Throughout this manuscript, K denotes the number of columns in the parity-check
matrix H , and k denotes the number of its rows. Equivalently, K is the codeword length,
and K − k is the dimension of the code. The weight of the noise is denoted by w, which
always divides K . The block size is denoted by bs ← K/w and a w-regular noise vector
is sampled as a concatenation of w random unit vectors (the blocks) of length bs. Regw
denotes the set of all length-K w-regular vectors.

Cyclic shifts. Given a vector u ∈ Fn
2 and i ∈ [n], u ↓ i is used to denote the vector

u cyclically shifted by i steps (in other words, u ↓ i is the convolution of u and ei). The
notation Shift(u, i) is also used to denote u ↓ i. The concept is extended to a block-by-

block cyclic shift of vectors: given a vector u ∈ FK
2 , viewed as a sequence of blocks

(u1, · · · ,um) ∈ FK/m
2 ×· · ·×FK/m

2 , and a vector of shifts x ∈ [l]m, u ↓ x denotes the vector
obtained by shifting the blocks of u according to x. Specifically, u↓x = (v1, · · · ,vm)where
each vi is the vector obtained by cyclically shifting (downward) the vector ui by xi steps.
To ensure clarity,↓ is treated as a “top priority” operator: by default, for any other operation
op, u↓x op v is interpreted as (u↓x) op v and not u↓ (x op v).

Binary tree. For a tree of size 2D, and each leaf i ∈ [2D], CoPath(i) denotes the set of
all the siblings of the nodes in the path from the root to the i-th leaf. If bit-decompose i is
expressed as

∑D
j=1 2

j−1 · ij for ij ∈ {0, 1}, the associated value of the i-th leaf is defined as
Xi := Xi1,...,iD .

Pòlya’s Enumeration Theorem. Pòlya’s Enumeration Theorem is a powerful combi-
natorial tool used to count distinct configurations under the action of a symmetry group.
Let G be a finite group acting on a finite set X , and let C be a set of colors. The number of
distinct colorings of X , up to the action of G, is given by:

Z(G,C) =
1

|G|
∑
g∈G

|C|Fix(g),

where |G| is the order of the group G, and Fix(g) denotes the number of elements in X
that remain fixed under the action of g.
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3.2 Algorithmic and Computational Models

Turing Machine. A Turing machine is a mathematical model used to describe compu-
tations. It processes input on a tape, reading symbols and performing operations such as
writing, moving left or right, or halting based on a set of predefined rules. A formal definition
is below:

Definition 3.2.1. A Turing machine is a 7-tuple M = (Q,Γ, b,Σ, δ, q0, F ), where Q is the

set of states, Γ is the tape alphabet, b ∈ Γ is the blank symbol, Σ ⊆ Γ \ {b} is the input on the

tape, δ is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

Since the machine halts when it reaches a state in F , this model can be useful for defining
the computations that an algorithm can perform. In this manuscript, computations are
modeled using probabilistic Turing machines, which are Turing machines that can make
use of randomness via a uniform random tape. Given a probabilistic Turing machine A and
an input x, y ←$ A(x) –or y ← A(x; r) when the random coins are explicit– is written to
indicate that y is sampled by running A on x with a uniform random tape.

Interactive protocols. In interactive protocols, where more parties are involved, each
party can be modeled as an interactive probabilistic Turing machine. These are multi-tape
Turing machines equipped with additional tapes for communication: one read-only and one
write-only. Interaction betweenmachines is modeled by allowing them to exchangemessages
through their communication tapes, enabling the simulation of interactive protocols between
parties.

Multi-Party Computation (MPC). Multi-party computation is a particular class of in-
teractive protocols where n multiple parties, each modeled as an interactive probabilistic
Turing machine, aim to jointly compute a function f(x1, x2, . . . , xn) of their private inputs
x1, x2, · · · , xn, without revealing any additional information about their inputs: the interac-
tion between parties is modeled as message exchanges over their communication tapes. An
MPC protocol is considered secure if, for every adversary corrupting a subset of the parties,
there exists a simulator that can replicate the view of the adversary using only the inputs
and outputs that the adversary is allowed to observe. This guarantees that the protocol leaks
no information about honest parties’ inputs beyond what is revealed by the output of the
function itself.

Polynomial-TimeAlgorithms. A probabilistic algorithm is referred to as a PPT algorithm
(Probabilistic Polynomial-Time algorithm) if it runs in time polynomial in the size of its
input, for all inputs and all random coins.
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Communication Cost. The total communication cost of a protocol P is denoted by
Comm(P), defined as the sum of all messages exchanged between parties during the ex-
ecution of P . For a protocol with n rounds, where each round i involves message ex-
changesmj

i of length |m
j
i | from a party Pj , the communication cost is given by Comm(P) =∑n

i=1

∑
j |m

j
i |. When applied to multi-party protocols, Comm(P) is considered as the aggre-

gate communication over all parties. For example, in the case of Fλ
2 vectors communicated

over t rounds in an MPC protocol, Comm(P) is computed as the total bit-length of all
transmitted vectors.

Preprocessing Phase. The preprocessing phase of a protocol P includes all the steps
that the parties can perform before knowing their private inputs. In the case of Multi-Party
Computation (MPC), the preprocessing phase can be:

• Independent Preprocessing Phase: this involves tasks that don’t even depend on the
function f that the parties want to compute. Examples include generating correlated
randomness or cryptographic keys that can be reused across different protocols.

• Dependent Preprocessing Phase: here, the steps in the preprocessing are tailored to the
specific function f : the parties want to generate special correlated data or specific
preprocessing material required for securely evaluating f .

In scenarios involving a trusted external party, preprocessing may include distributing
pre-computed correlated randomness or secret shares to participants. This can significantly
reduce the computational and communication effort required by the parties during the main
execution of the protocol. The preprocessing phase aims to offload as much work as possible
to a stage where the private inputs are not yet known so that the online phase —when inputs
are available—can be as efficient as possible. Its complexity is measured by the total time
and communication required to complete all preprocessing steps.

Runtime. The runtime of an algorithm or protocol A is the total time required to com-
plete its execution, typically expressed as a function of the input size n. For deterministic
algorithms, runtime is represented by the number of basic operations performed, denoted as
T (n). For randomized or probabilistic algorithms, runtime may include an expectation over
possible random choices. In cryptographic protocols, runtime includes both computation
time and any delaying time that is necessary for communication rounds. For example, in an
MPC protocol, runtime includes the combined time for local computations by each party
and the time for message exchanges during different rounds. Runtime analysis is crucial for
evaluating the efficiency of A, especially in practical implementations.
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3.3 Principles of Security and Probability

Negligiblity. A function f is said to be negligible, denoted f(x) = negl(x), if for every
constant c ∈ N, there exists an x0 ∈ N such that for all x ≥ x0, it holds that ∥f(x)∥ ≤ 1/xc.
A function f is said to be overwhelming if 1− f is negligible.

Security parameter. In cryptography, a security parameter, denoted byλ in thismanuscript,
is used to quantify the computational difficulty of breaking a system: all efficient algorithms
are assumed to run in polynomial time in λ. Usually, all the parameters in a designed
protocol are chosen such that it guarantees λ bit of security, implying that the best-known
attack requires 2λ steps to succeed. In this manuscript, as often in cryptography, the chosen
value for λ is 128, since 2128 computational steps are considered infeasible with current
technology.

Statistical indistinguishability. The statistical distance between two distributions D0

and D1 over a finite set S is defined as∑
i∈S

∣∣∣∣ Prx←D0

[x = i]− Pr
x←D1

[x = i]

∣∣∣∣ .

Definition 3.3.1. Two distributions are said to be statistically indistinguishable if their sta-
tistical distance is negligible. This implies that no algorithm, even one with unbounded com-

putational power, has more than a negligible advantage in distinguishing between the two

distributions.

Independent Random Variables. A set of random variables X1, . . . , Xn is independent
if the joint probability Pr[X1 = x1, . . . , Xn = xn] equals the product

∏n
i=1 Pr[Xi = xi].

Independence ensures that variables do not provide any information about others, which is
essential for analyzing statistical indistinguishability between distributions derived from
independent sources.

Markov bound. LetX be a non-negative random variable with expected value µ = E[X].
For any a > 0, the Markov Bound states that:

Pr(X ≥ a) ≤ E[X]

a
.

This inequality provides an upper bound on the probability thatX takes a value significantly
larger than its expected value.
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Chernoff bound. Let X1, X2, . . . , Xn be n independent random variables, where each
Xi ∈ {0, 1}, and let X =

∑n
i=1Xi denote their sum. If µ = E[X] is the expected value of

X , then for any δ > 0:

• The probability that X exceeds (1 + δ)µ is bounded as:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

• The probability that X is less than (1− δ)µ is bounded as:

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

.

These bounds indicate that the probability ofX deviating significantly from its expected
value decreases exponentially as the deviation increases. For this reason, The Chernoff
Bound is widely used to analyze the concentration of sums of independent random variables
around their expectation.

Chernoff Bound for Hypergeometric Distributions. Let X be a random variable
following a hypergeometric distribution, where N is the population size,K is the number
of successes in the population, and n is the number of samples drawn without replacement.
The expected value of X is given by

µ = E[X] = n · K
N
.

For any δ > 0, the following bounds hold:

• The probability that X exceeds (1 + δ)µ is bounded as:

Pr[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2(1 + δ/3)

)
.

• The probability that X is less than (1− δ)µ is bounded as:

Pr[X ≤ (1− δ)µ] ≤ exp

(
−δ2µ

2

)
.

Stirling’s Inequality. The Stirling inequality provides bounds for factorials, which are
particularly useful in probabilistic and combinatorial analyses. For any positive integer n,
the factorial n! satisfies:

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e

1
12n .
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This inequality is essential when approximating probabilities involving large factorials,
such as in binomial or hypergeometric distributions. In cryptographic applications where
asymptotic bounds play a crucial role, this inequality offers a precise way to estimate large
combinatorial terms.

Birthday Paradox. The Birthday Paradox is a counterintuitive probability result usually
applied in the analysis of hash functions and collision probabilities. This result shows that
in a set of n uniformly chosen samples from a space of size N , the probability of at least
one collision (i.e. two samples being identical) becomes significant even for n≪ N . More
precisely, the probability of observing a collision can be approximated as:

Pr[collision] ≈ 1− e−n(n−1)/(2N).

For n = O(
√
N), this probability becomes non-negligible, with a collision probability

exceeding 1/2 for n ≥ 1.17
√
N . This phenomenon has significant implications in cryptog-

raphy, especially for hash functions: if the hash function’s output space is of size 2N , the
expected number of samples required to observe a collision is approximately 2N/2.

3.4 Cryptographic Primitives

3.4.1 Hash function

Hash functions are cryptographic primitives that take inputs of any length and produce
fixed-size outputs. They represent a core component in cryptography: since their main role
is to provide compact and secure representations of data, they are widely used in applications
like commitment schemes and digital signatures –hashing the message first allows signing
a smaller, fixed-size digest instead of the whole message, which improves efficiency while
preserving security–.

Definition 3.4.1. A cryptographic hash function is a deterministic algorithmH : {0, 1}∗ →
{0, 1}ℓ, mapping inputs of arbitrary size to fixed-length outputs, that satisfy the following

properties:

• Pre-image Resistance: Given y ∈ {0, 1}ℓ, it should be computationally infeasible to

find any x ∈ {0, 1}∗ such thatH(x) = y.

• Second Pre-image Resistance: Given x ∈ {0, 1}∗, it should be computationally infea-

sible to find x′ ̸= x such thatH(x) = H(x′).

• Collision Resistance: It should be computationally infeasible to find two distinct inputs

x, x′ ∈ {0, 1}∗ such thatH(x) = H(x′).
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Modern hash functions, such as SHA-2 [Nat15a] and SHA-3 [Nat15b], are designed to
satisfy these properties while maintaining computational efficiency. The security of these
functions is often analyzed in the Random Oracle Model (see section 3.4.7.1) [BR93], where
they are seen as truly random functions. However, for a hash function with an output length
of ℓ bits, the security level depends on the specific property:

• For pre-image resistance, the security level is 2ℓ, as finding a pre-image requires
brute-forcing over the entire output space.

• For collision resistance, the security level is reduced to 2ℓ/2 due to the Birthday Paradox.

Applications in Cryptography. Hash functions play an important role in many crypto-
graphic protocols:

• Ensuring message integrity and authenticity, as in Message Authentication Codes
(MACs) like HMAC [KBC97].

• Enhancing efficiency in digital signatures by compressing the data to be signed, while
maintaining security [BR96].

• Securing password storage, often combined with salting techniques to protect against
pre-image attacks.

• Enabling commitment schemes by providing computationally binding and hiding
commitments [CD01].

• Powering proof-of-work systems, such as in blockchain technologies like Bitcoin
[Nak08].

Hash Functions in Post-Quantum Cryptography. The advent of quantum computing
presents new challenges for traditional hash functions. Grover’s algorithm [Gro96] enables
quantum computers to search an unsorted database in O(2n/2) time, effectively halving
the security level of classical hash functions for pre-image resistance. For example, a
hash function providing 256-bit classical security would offer only 128 bits of quantum
security against pre-image attacks. Different, and more complex, is the case for collision
resistance, where the security is already 2n/2 even in the classical setting due to the Birthday
Paradox. However, the introduced vulnerability necessitates adapting hash functions for
post-quantum cryptography.

The NIST post-quantum cryptography standardization process [Natng] has highlighted
hash-based schemes as promising candidates for quantum-resistant cryptographic protocols.
Several approaches have been proposed:

• Increase Output Size: by doubling the output length of classical hash functions, the
security level can be restored to match pre-quantum standards.
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• Hash-Based Cryptography: cryptographic schemes such as Merkle Trees [Mer89] and
SPHINCS+ rely on the security of hash functions. These schemes are well-suited for
post-quantum applications since they rely on minimal cryptographic assumptions.

• Structured Designs: new hash functions based on stronger mathematical constructs
like lattices (e.g., Learning With Errors) introduce additional hardness assumptions,
enhancing their security against quantum attacks.

In conclusion, hash functions remain a cornerstone of cryptography: through strategic
adaptations and new innovative designs, they can address the challenges of a post-quantum
world while staying versatile tools with a really wide range of applications.

Salted hash function. A salt is a random value appended to an input before hashing.
Represented as H(x∥s), where s is the salt and ∥ denotes concatenation, the purpose of
salting is to ensure that even identical inputs produce distinct hash values, thus enhancing
security. Salted hash functions are widely adopted in systems where unique hash values are
necessary, such as in password storage and authentication systems [BHO+12].

Typically, salts are random and of a fixed length (often 128 bits or more), providing
sufficient uniqueness across multiple hashing operations. Although the salt does not need to
be secret, it should be stored securely alongside the hash output to maintain consistency for
verification purposes [KSW+97]. Salting also finds applications in cryptographic protocols,
adding an extra layer of uniqueness in multi-target attack scenarios [BHO+12].

3.4.2 Commitment Schemes

Commitment schemes are one of the most fundamental primitives in cryptography. They
allow a committer to commit to a value s, producing a commitment c, which can later be
opened to reveal s to the verifier. Such schemes ensure that the committed value cannot be
changed after the commitment phase (binding), while hiding the committed value during
the commitment phase (hiding). This section provides a formal definition of a commitment
scheme in the plain model. However, within the manuscript, the commitment scheme in the
Random Oracle Model (ROM) will also be implicitly utilized, though it will not be formally
detailed

Definition 3.4.2 (Commitment Scheme). A commitment scheme Π is a tuple of PPT algo-

rithms (Setup,Comm,Open) satisfying the following:

• Setup(1λ): Generates the public parameters, i.e. the message spaceM, the commitment

space C, the opening space D, and the randomness spaceR.

• Comm(m; r): Given a messagem ∈M and randomness r ∈ R, outputs a commitment-

opening pair (c, d) ∈ C × D.
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• Open(c, d,m): Verifies the validity of the opening (m, d) for the commitment c and

outputs a bit b ∈ {0, 1}.

To be considered secure a commitment scheme must satisfy correctness, hiding, and
binding.

Definition 3.4.3. A commitment scheme is correct if for all public parametersM, C,R,D ←
Setup(1λ), any messagem ∈M, and any randomness r ∈ R, it holds that Open(c, d,m) = 1

for (c, d)← Comm(m; r).

Definition 3.4.4. A commitment scheme is hiding if for all PPT adversaries A, the advantage
AdvhidingA (λ) is negligible, where the advantage is defined as

AdvhidingA (λ) = |Pr[A(c0) = 1]− Pr[A(c1) = 1]| ,

and cb ← Comm(mb; r) for b ∈ {0, 1},m0,m1 ∈M, and uniformly random r ∈ R.

Definition 3.4.5. A commitment scheme is binding if for all PPT adversaries A, the success
probability SuccbindingA (λ) is negligible, where

SuccbindingA (λ) = Pr[Open(c, d,m) = 1 ∧ Open(c, d′,m′) = 1 ∧m ̸= m′].

3.4.3 Pseudorandom Generator (PRG)

A pseudorandom generator (PRG) is a cryptographic primitive, designed to take a short, truly
random seed and expand it into a much longer sequence such that it appears to be computa-
tionally indistinguishable from a uniformly random string to any efficient adversary. This
property represents the base for the security of PRG-based cryptographic schemes [BM82;
Yao82]. The concept of pseudorandomness was formalized by Blum and Micali [Blu82],
and later extended by Yao [Yao08] to define the security of PRGs based on computational
hardness assumptions.

Definition 3.4.6. A pseudorandom generator (PRG) is a deterministic polynomial-time algo-

rithm G : {0, 1}s → {0, 1}m that takes as input a sd x ∈ {0, 1}λ of length λ and outputs a

string G(x) ∈ {0, 1}m of lengthm > λ, wherem = m(λ) is a polynomial function of λ.

It satisfies the pseudorandomness property: for any probabilistic polynomial-time algorithms

A, there exists a negligible function negl(·) such that, for x← {0, 1}λ and y ←$ {0, 1}m

|Pr[A(G(x)) = 1]− Pr[A(y) = 1]| ≤ negl(λ)

where x← {0, 1}λ and y ← {0, 1}m is uniformly random.
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Pseudorandom generators (PRGs) rely on computational hardness assumptions, such
as the difficulty of factoring integers or solving the discrete logarithm problem. These
assumptions guarantee that it is computationally infeasible to invert the generation process:
such property is fundamental to the security of PRGs, both in classical cryptography and in
post-quantum frameworks [Reg06; Pei10].

Definition 3.4.7. Let G : {0, 1}s → {0, 1}n be a PRG, and let D be a distinguisher, an

algorithm that attempts to differentiate between the output of G and a uniformly random

sequence. The advantage of D is defined as:

AdvG(D) = |Pr[D(G(Us)) = 1]− Pr[D(Un) = 1]| ,

where Us is a uniformly random seed of length s, and Un is a uniformly random sequence of

length n.

A PRG is (t, ϵ)-secure if, for any distinguisherD running in time t, the advantage AdvG(D) ≤ ϵ.

The (t, ϵ) security model allows quantifying the practical security of PRGs, as it provides
a concrete bound on the computational resources required by an adversary to break the
PRG’s pseudorandomness. This model is widely used in cryptographic proofs, as it enables
designers to analyze the security of PRGs within the constraints of real-world adversaries.
For instance, a PRG with (280, 2−40)-security is considered resistant to adversaries with
resources equivalent to 280 operations, achieving a distinguishing probability of at most
2−40 [BR96]. Hence, (t, ϵ)-secure PRGs are essential in scenarios where the generated pseu-
dorandom sequences must meet stringent security requirements, such as in-stream ciphers
and cryptographic protocols where even slight statistical biases could lead to vulnerabilities.
This security notion also allows for a practical trade-off between efficiency and security; by
adjusting t and ϵ, cryptographic schemes can be tailored to specific security levels based on
the capabilities of adversaries.

3.4.4 Pseudorandom Functions (PRF)

The concept of a Pseudorandom Function (PRF) plays a foundational role in cryptographic
applications, providing a deterministic yet indistinguishable mapping from inputs to outputs.
Formally, a PRF is defined as follows:

Definition 3.4.8 (Pseudorandom Function). A pseudorandom function (PRF) is a deterministic

function F : K×X → Y , where K denotes the key space, X the input space, and Y the output

space. F satisfies the following property: for any PPT adversary A, given oracle access to either

Fk (for a random key k) or a truly random function f : X → Y , the adversary’s advantage in
distinguishing the two is negligible:

Adv
prf
A (λ) =

∣∣∣Pr[Expprf−0A (λ) = 1]− Pr[Expprf−1A (λ) = 1]
∣∣∣ ≤ negl(λ).
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where the experiments are defined in Figure 3.1.

Experiment Expprf−b
A (λ):

1. If b = 0: the challenger samples k ←$ K and provides oracle access to Fk to
the adversary A.

2. If b = 1: the challenger provides oracle access to a truly random function
f : X → Y to the adversary A.

3. The adversary A interacts with the oracle and eventually outputs a bit b′.

4. The experiment outputs 1 if b′ = b, and 0 otherwise.

Figure 3.1: Experiment Exp
prf−b
A (λ) for pseudorandom functions.

3.4.4.1 Constructing a PRF Using a PRG: the GGM Construction The construction
of a pseudorandom function (PRF) from a pseudorandom generator (PRG) was introduced
by Goldreich, Goldwasser, and Micali in their seminal 1986 paper How to Construct Random

Functions [GGM86]. This construction, commonly referred to as the GGM Construction,
demonstrates how a deterministic function that expands a short random seed can be used to
create a function indistinguishable from a truly random one.

At its core, the GGM Construction relies on building a binary tree structure using the
PRG to define a PRF. Here’s the high-level idea:

• Start with a short seed k (the key of the PRF) and treat it as the root of the tree.

• Use the PRG G to expand the seed into two outputs: one corresponding to the left
child (0) and the other to the right child (1).

• For a given input x ∈ {0, 1}d, interpret x as a sequence of directions in the tree, where
each bit of x determines whether to move left or right at each level.

• The leaf reached by following the path defined by x is the output Fk(x) of the PRF.

The security of this construction relies on the pseudorandomness of G. If G is secure,
then the adversary cannot distinguish the output of the PRF from that of a truly random
function, even with oracle access. A formal definition is provided below.

Definition 3.4.9. Let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator that expands a

λ-bit seed into a 2λ-bit pseudorandom output. The PRF F : {0, 1}λ × {0, 1}d → {0, 1}λ is

defined recursively as follows: Given a PRG G, the PRF F is constructed as:

• Interpret the input x ∈ {0, 1}d as a binary string x1, x2, . . . , xd.
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• Start with v0 = k, where k is the PRF key.

• At each level i, compute vi = G(vi−1) and split vi into two halves: vi[0] and vi[1].

• Follow the path determined by x: at level i, select vi[xi].

• The final output Fk(x) is the value at the leaf node.

This construction ensures that F inherits the pseudorandomness of G, assuming that
G is secure: the security of the PRF can be shown via a hybrid argument, where the ad-
versary’s ability to distinguish Fk from a truly random function is reduced to breaking the
pseudorandomness of G.

3.4.5 Puncturable Pseudorandom Functions (PPRF)

A puncturable pseudorandom function (PPRF), introduced in [KPT+13; BW13; BGI14], is
a type of pseudorandom function that allows selective omission of specific output values,
known as punctures, while preserving pseudorandomness for other input values: given an
input x, and a PRF key k, a punctured key, denoted k{x} allows evaluating F at every point
except for x, and does not reveal any information about the value F.Eval(k, x).

By allowing punctures, PPRFs enable flexible, fine-grained control over which outputs
are revealed, adding a layer of security and functionality to cryptographic protocols: this
is the reason why they are particularly useful in cryptographic applications that require
selective revocation of function values, such as in zero-knowledge proofs, secure multiparty
computation, and digital signatures [BGI16a; GGH+13]. For example, the seminal GGM
PPRF [GGM86] is a PPRF that has been used in multiple contexts to compress many seeds
into a short seed, such that one can succinctly open all-but-one seeds. In particular, it was
first used in the context of MPC-in-the-head signatures in [KKW18].

Definition 3.4.10. A puncturable pseudorandom function F is a family of pseudorandom

functions {Fk : {0, 1}n → {0, 1}m}k∈K indexed by a key k ∈ K with the following properties:

• Pseudorandomness: for all PPT algorithms A, there exists a negligible function negl(·)
such that

|Pr[A(Fk(x)) = 1]− Pr[A(r) = 1]| ≤ negl(n),

where k ← K, x← {0, 1}n, and r ← {0, 1}m is uniformly random.

• Puncturability: For any input x∗ ∈ {0, 1}n, there exists an efficient puncturing

algorithm Puncture(k, x∗) that outputs a modified key kx∗ , which allows evaluation of

Fk at all points x ̸= x∗ but hides the value Fk(x
∗).
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• Security under Puncturing: for all PPT algorithmsA, there exists a negligible function
negl(·) such that

|Pr[A(Fk(x)|kx∗) = 1]− Pr[A(r) = 1]| ≤ negl(n),

where k ← K, x∗ ∈ {0, 1}n, kx∗ = Puncture(k, x∗), and r ← {0, 1}m is uniformly

random.

In the previous section 3.4.4.1, a PRF was constructed from a PRG using the GGM
construction, which organizes the computation as a binary tree, leveraging a length-doubling
pseudorandom generator G. Hence, the resulting PRF is puncturable, as its tree structure
allows specific inputs to be excluded by removing certain sub-tree.

A PPRF can be constructed in various ways, depending on how the underlying PRG
G is instantiated: of course, the instantiation directly affects the efficiency and security of
the resulting PPRF. Below, two common approaches to defining G are discussed, based on
widely used cryptographic primitives: symmetric encryption and hash functions.

AES-Based PPRFs. Using the Advanced Encryption Standard (AES) [01] as the core
primitive, the PRG can be instantiated as:

G(x) = (AESk0(x)⊕ x,AESk1(x)⊕ x),

where k0 and k1 are keys corresponding to the left and right branches. This construction
ensures that each branch label is uniquely determined by the node label x and its correspond-
ing key. Additionally, these constructions leverage the efficiency and security properties
of AES, ensuring that the outputs remain indistinguishable from random for anyone with-
out knowledge of k0,1. AES-based PPRFs are particularly suitable for hardware-optimized
implementations, where their performance advantages are significant.

Hash-Based PPRFs. Alternatively, G can be instantiated using a cryptographic hash
function H , such as SHA-256 [Nat15a]. In this case, G can be defined as:

G(x) = (H(x∥k0), H(x∥k1)),

where k0, and k1 are keys for the left and right branches again, and ∥ denotes concatenation.
While hash-based PPRFs are not as optimized for hardware as AES-based constructions, they
offer greater flexibility in software environments. This makes them ideal for applications
where simplicity and compatibility are prioritized, such as secure multiparty computation
(MPC) and zero-knowledge protocols.
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3.4.6 Pseudorandom correlation generators

The notion of pseudorandom correlation generator (PCG) is recalled from [BCG+19b].
At a high level, a PCG for some target ideal correlation takes as input a pair of short,
correlated seeds and outputs long correlated pseudorandom strings, where the expansion
procedure is deterministic and can be applied locally. The definitions below are taken
directly from [BCG+20b].

Definition 3.4.11 (Correlation generator). A PPT algorithm C is referred to as a correlation
generator if, on input 1λ, C outputs a pair of elements in {0, 1}n×{0, 1}n for n ∈ poly(λ)(λ).

The security definition of PCGs requires the target correlation to satisfy a technical
requirement, which states that it must be possible to efficiently sample from the conditional
distribution ofR0 givenR1 = r1 and vice versa. This property holds for the correlations
considered here.

Definition 3.4.12 (Reverse-sampleable correlation generator). Let C be a correlation gener-

ator. C is said to be reverse sampleable if there exists a PPT algorithm RSample such that, for

σ ∈ {0, 1}, the correlation obtained via:

{(R′0,R′1) |(R0,R1)←$ C(1λ),R′σ := Rσ,R′1−σ ←$ RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

Definition 3.4.13 (Pseudorandom Correlation Generator (PCG)). Let C be a reverse-sam-

pleable correlation generator. A pseudorandom correlation generator (PCG) for C is a pair of

algorithms (PCG.Setup,PCG.Expand) with the following syntax:

• PCG.Setup(1λ) is a PPT algorithm that, given a security parameter λ, outputs a pair of

seeds (c0, c1);

• PCG.Expand(σ, cσ) is a polynomial-time algorithm that, given a party index σ ∈ {0, 1}
and a seed cσ, outputs a bit stringRσ ∈ {0, 1}n.

The algorithms (PCG.Setup,PCG.Expand) satisfy the following:

• Correctness. The correlation obtained via:

{(R0,R1) | (c0, c1)←$ PCG.Setup(1λ), Rσ ← PCG.Expand(σ, cσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).
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• Security. For any σ ∈ {0, 1}, the following two distributions are computationally

indistinguishable:

{(c1−σ,Rσ) | (c0, c1)←$ PCG.Setup(1λ),Rσ ← PCG.Expand(σ, cσ)} and
{(c1−σ,Rσ) | (c0, c1)←$ PCG.Setup(1λ),R1−σ ← PCG.Expand(σ, c1−σ),

Rσ ←$ RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

It is noted that PCG.Setup could simply output a sample from C. To avoid this trivial
construction, the seed size is required to be significantly shorter than the output size.

3.4.6.1 Programmable PCGs. AprogrammablePCG allows for the generation ofmultiple
PCG keys such that part of the correlation generated remains consistent across different
instances. Programmable PCGs are utilized to construct n-party correlated randomness from
the 2-party correlated randomness generated by the PCG. When expanding n-party shares
(e.g., Beaver triples) into a sum of 2-party shares, programmable PCGs ensure consistent
pseudorandom values across these cross terms. The formal definition is as follows:

Definition 3.4.14. A tuple of algorithms PCG = (PCG.Setup,PCG.Expand) following the

syntax of a standard PCG, but where PCG.Setup(1λ) takes additional random inputs ρ0, ρ1 ∈
{0, 1}∗, is referred to as a programmable PCG for a simple bilinear 2-party correlation Cn

e

(specified by e : G1 ×G2 → GT ) if the following conditions hold:

• Correctness. The correlation obtained via:{
((R0, S0), (R1, S1))

∣∣∣∣∣ρ0, ρ1 $← $, (k0, k1)←$ PCG.Setup(1λ, ρ0, ρ1),

(Rσ, Sσ)← PCG.Expand(σ, kσ) for σ ∈ {0, 1}

}

is computationally indistinguishable from Cn
e (1

λ).

• Programmability. There exists a public efficiently computable functions ϕ0 : {0, 1}∗ →
Gn

1 , ϕ1 : {0, 1}∗ → Gn
2 such that:

Pr

ρ0, ρ1 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ0, ρ1)

(R0, S0)← PCG.Expand(0, k0),

(R1, S1)← PCG.Expand(1, k1)

:
R0 = ϕ0(ρ0)

R1 = ϕ1(ρ1)

 ≥ 1− negl(λ),

where e : Gn
1 ×Gn

2 → Gn
T is the bilinear map applied componentwise.
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• Programmable security. The distributions:{
(k1, (ρ0, ρ1)) | ρ0, ρ1 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ0, ρ1)

}
and {

(k1, (ρ0, ρ1)) | ρ0, ρ1, ρ̃0 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ̃0, ρ1)
}

as well as: {
(k0, (ρ0, ρ1)) | ρ0, ρ1 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ0, ρ1)

}
and {

(k0, (ρ0, ρ1)) | ρ0, ρ1, ρ̃0 ← $, (k0, k1)←$ PCG.Setup(1λ, ρ̃0, ρ1)
}

are computationally indistinguishable.

3.4.7 Idealized Models in Cryptography

Idealized models are foundational tools in cryptographic analysis, enabling the study of
cryptographic primitives under idealized assumptions. This section presents some among
the most widely used models: Random Oracle Model (ROM), the Random Permutation Model

(RPM), and the Ideal Cipher Model. These abstractions simplify security proofs by assuming
random behaviors for hash functions and block ciphers.

3.4.7.1 Random Oracle Model (ROM) The Random Oracle Model (ROM), introduced by
Bellare and Rogaway [BR93], models hash functions as random oracles. In this abstraction,
a hash function H is treated as a theoretical black box that, given an input x, returns a
uniformly random output H(x) of fixed length. Consistency is guaranteed, as repeated
queries with the same input produce the same output, but queries with distinct inputs
generate independent outputs.

The ROM is used in the analysis of cryptographic protocols that rely on hash functions.
For example, the Fiat-Shamir transformation [FS87] leverages the ROM to convert interactive
proofs into non-interactive ones, preserving the zero-knowledge property. Additionally, the
ROM is the usual environment for analyzing the security of digital signature schemes [BR94].
However, it is crucial to note that the ROM is an abstraction: real-world hash functions,
such as SHA-256 [Nat15a], are deterministic algorithms with predefined structures and then
cannot fully emulate the behavior of a random oracle.

3.4.7.2 Random Permutation Model (RPM) The Random Permutation Model (RPM)

models block ciphers as random permutations. In this framework, a block cipher E is assumed
to behave as a randomly chosen bijection from the set of all possible permutations over a
fixed-size domain. Unlike the ROM, which models hash functions as random mappings, the
RPM ensures that E is a bijective function, ensuring that each input has a unique output and
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vice versa: this bijectivity aligns with the requirements of encryption, where each plaintext
should map to a unique ciphertext and be invertible with the correct key.

The RPM has been instrumental in the analysis of block cipher constructions, such as the
Data Encryption Standard (DES) [Nat99] and the Advanced Encryption Standard (AES) [01].
While real-world block ciphers are designed to approximate as close as possible random
permutations, they are constrained by structured designs and limited key sizes. However,
the RPM provides a valuable abstraction for understanding their security against attacks
like differential [BS91] and linear cryptanalysis [Mat94].

3.4.7.3 Ideal Cipher Model The Ideal Cipher Model extends the RPM by introducing key
dependency. In this model, a block cipher Ek is treated as a family of random permutations
indexed by the key k. Each key k defines an independent random permutation over the mes-
sage space, and the encryption process corresponds to applying the permutation associated
with k.

This model is particularly useful for analyzing cryptographic constructions that rely
on keyed primitives, such as pseudorandom functions. For example, Feistel network con-
structions [LR88] and puncturable pseudorandom functions (PPRFs) leverage the Ideal
Cipher Model to achieve provable security guarantees. The model has also been applied to
multi-instance security and to analyze the robustness of schemes under related-key attacks.

Limitations of Idealized Models While idealized models such as the ROM, RPM, and
Ideal Cipher Model provide a simplified framework for analyzing cryptographic construc-
tions, their assumptions do not align perfectly with real-world implementations: real hash
functions and block ciphers are deterministic and exhibit structural properties that deviate
from ideal randomness.

3.5 Code-Based Cryptography

Code-based cryptography, first introduced by McEliece in 1978 [McE78], is one of the oldest
approaches in the field of cryptographic design. Built upon the computational hardness of
decoding linear codes, this paradigm represents a cornerstone of both classical and post-
quantum cryptography. The central assumption underpinning code-based cryptography is
the intractability of some coding theory problems, such as the Syndrome Decoding Problem,
which has consistently resisted efficient solutions, even with quantum algorithms: this makes
code-based cryptography a robust and practical candidate for post-quantum standardization.
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3.5.1 Syndrome Decoding Assumption

The Syndrome Decoding (SD) Assumption is a foundational problem in coding theory and
a critical assumption in code-based cryptography, particularly relevant for post-quantum
cryptographic schemes. At a high level, given a weight parameter w, the syndrome decoding
problem asks to find a solution of Hamming weight w (under the promise that it exists) to
a random system of linear equations over F2. Formally, let SparseKw denote the set of all
vectors of Hamming weight w over FK

2 . Then:

Definition 3.5.1 (Syndrome Decoding Problem). Let K, k, w be three integers, with K >

k > w. The syndrome decoding problem with parameters (K, k, w) is defined as follows:

• (Problem generation) Sample H ←$ Fk×K
2 and x ←$ SparseKw . Set y ← H · x. Output

(H, y)

• (Goal) Given (H, y), find x ∈ SparseKw such that H · x = y.

A pair (H, y) is referred to as an instance of the syndrome decoding problem. Variants
of the syndrome decoding problem are also considered in this context, involving different
restrictions on the solution vector x. The constraint on x can be rephrased as a linear equation
overN: the solution vector xmust satisfy the condition ⟨x,1⟩ = w, where 1 denotes the all-1
vector, and the inner product is computed over the integers (this perspective is specifically
applicable to syndrome decoding over F2). Other standard variants of syndrome decoding
from the literature can similarly be interpreted as instances of a broader notion of syndrome

decoding under N-linear constraints, introduced below.

Definition 3.5.2 (Syndrome Decoding under N-Linear Constraints). Let K, k, w, c be four

integers, withK > k > w and k > c. Let L ∈ Nc×K
be a matrix and v ∈ Nc

a vector; (L,v)

is referred to as the N-linear constraint. The constraint (L,v) is said feasible if it is possible
to sample a uniformly random element from the set {x ∈ {0, 1}K : L · x = v} in time

poly(λ)(K).

The syndrome decoding problem with parameters (K, k, w) and feasibleN-linear constraint
(L,v) is defined as follows:

• (Problem generation) Sample a matrix H ←$ {0, 1}k×K and a vector x ←$ {x ∈
{0, 1}K : L · x = v}. Set y ← H · x mod 2. Output (H, y).

• (Goal) Given (H, y), find x ∈ {0, 1}K such that

– H · x = y mod 2 (the F2-linear constraint), and

– L · x = v over N (the N-linear constraint).
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3.5.1.1 Regular Syndrome Decoding Problem - RSD The regular syndrome decoding
problem is a well-established variant of syndrome decoding: it was introduced in 2003
in [AFS03] as the assumption underlying the FSB candidate to the NIST hash function
competition and was subsequently analyzed in [FGS07; MDC+11; BLP+11], among others.
It has also been used and analyzed in many recent works on secure computation, such
as [HOS+18; BCG+18; BCG+19b; BCG+19a; BCG+20b; YWL+20; WYK+21; RS21; CRR21;
BCG+22]

In the RSD problem, the solution vector x is required not only to have a Hamming weight
w, but also to exhibit a specific regular structure. Formally, a vector x ∈ FK

2 is said to be
w-regular if it can be divided into w blocks, each containing exactly one non-zero position.
This constraint adds an extra layer of complexity to the decoding process, as it limits the
possible configurations of x even further.

Definition 3.5.3 (Regular Syndrome Decoding Problem). Let K, k, w be three integers, with

K > k > w. The regular syndrome decoding problem with parameters (K, k, w) is defined as

follows:

• (Problem generation) Sample H ←$ Fk×K
2 and x←$ RegularKw . Set y ← H · x. Output

(H, y)

• (Goal) Given (H, y), find x ∈ RegularKw such that H · x = y.

In particular, in the field of digital signatures, the RSD problem serves as the underlying
hard problem in various code-based schemes that use the Fiat-Shamir with Aborts transfor-
mation and the MPC-in-the-Head paradigm, allowing for efficient zero-knowledge proofs
without the need for a trapdoor. Examples include recent advancements in code-based signa-
ture schemes where the RSD assumption has been leveraged to achieve compact signatures
with high levels of security.
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The chapter introduces the main cryptographic tools used in the results presented in
this thesis. The focus begins with digital signatures and their natural extension to threshold
schemes, emphasizing their relevance in post-quantum security [FJR22]. Key protocols
and proof techniques, such as zero-knowledge proofs and the Fiat-Shamir heuristic [FS87],
are discussed. A key role is played by the MPC-in-the-Head paradigm [IKO+07; KKW18],
a fundamental tool enabling efficient post-quantum signatures through techniques like
puncturable pseudorandom functions.
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4.1 Digital Signatures

The concept of digital signatures was first introduced by Diffie and Hellman in their work
[DH76], where they proposed the notion of public-key cryptography as a theoretical frame-
work. Shortly thereafter, Rivest, Shamir, and Adleman formally instantiated digital signatures
with the RSA scheme [RSA78], demonstrating their practical feasibility. These initial devel-
opments laid the foundation for a vast area of research, making digital signatures one of the
most studied primitives in cryptography: they allow to ensure authenticity and integrity
in electronic communications. Their security is based on the computational hardness of
certain mathematical problems, such as integer factorization or discrete logarithms, which
are exploited through one-way functions with trapdoors. The development of digital sig-
nature schemes has progressively advanced, addressing the need for improved security
guarantees: modern signature schemes incorporate advanced cryptographic techniques,
striking a balance between efficiency and robustness.

Since the NIST call for post-quantum cryptographic standards in 2016 [Natng], the
focus has shifted to developing digital signatures secure against quantum adversaries. This
has led to the instantiation and the analysis of numerous post-quantum schemes, built
upon different security assumptions, such as the hardness of lattice problems, multivariate
polynomial equations, hash-based constructions, and coding theory problems.

Definition 4.1.1 (Digital Signature Scheme). A digital signature scheme Σ is defined as a

tuple of three probabilistic polynomial-time (PPT) algorithms (KeyGen, Sign,Verify), specified

as follows:

• KeyGen(1λ): A randomized key generation algorithm that takes as input the security

parameter λ and outputs a signing key sk and a verification key pk. Formally, (sk, pk)←
KeyGen(1λ).

• Sign(sk,m): A signing algorithm that, given the private signing key sk and a message

m ∈M, outputs a signature σ. Formally, σ ← Sign(sk,m).

• Verify(pk,m, σ): A deterministic verification algorithm that, given the public verification

key pk, a message m ∈ M, and a signature σ, outputs a bit b ∈ {0, 1}, where b = 1

indicates that the signature is valid. Formally, b← Verify(pk,m, σ).

A digital signature scheme must satisfy the following security properties:

Definition 4.1.2 (Correctness). A digital signature scheme Σ is correct if, for any (sk, pk)←
KeyGen(1λ) and any messagem ∈M, it holds that:

Verify(pk,m, Sign(sk,m)) = 1.
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Standard security notions for signature schemes are existential unforgeability against
key-only attacks (EUFKO, Definition 4.1.3) and against chosen-message attacks (EUF-CMA,
Definition 4.1.4).

Definition 4.1.3 (EUF-KO security). Given a signature scheme Sig = (Setup, Sign,Verify)

and security parameter λ, Sig is said to be EUFKO-secure if any PPT algorithmA has negligible

advantage in the EUF-KO game, defined as

AdvEUFKOA = Pr

[
Verify(pk, µ∗, σ∗) = 1

(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← A(pk)

]
.

Definition 4.1.4 (EUF-CMA security). Given a signature scheme Sig = (Setup, Sign,Verify)

and security parameter λ, Sig is said to be EUF-CMA-secure if any PPT algorithm A has

negligible advantage in the EUF-CMA game, defined as

AdvEUF-CMA
A = Pr

[
Verify(pk, µ∗, σ∗) = 1

∧µ∗ /∈ Q

(sk, pk)← Setup({0, 1}λ)
(µ∗, σ∗)← ASign(sk,·)(pk)

]
,

where ASign(sk,·)
denotes A’s access to a signing oracle with private key sk and Q denotes the

set of messages µ that were queried to Sign(sk, ·) by A.

4.1.1 Applications

Digital signatures find extensive application across various domains, ensuring authenticity
and integrity in numerous practical systems [TSZ19]:

• Financial Systems: digital signatures are crucial in securing financial transactions,
enabling verification of the sender’s identity and preventing unauthorized modifica-
tions.

• Critical Infrastructure: in sectors such as energy and public transportation, digital
signatures confirm the authorization of commands issued by the central control
system.

• Organizational Use: enterprises and government agencies employ digital signatures
to guarantee the integrity and confidentiality of sensitive documents, ensuring that
they remain unchanged during storage and transmission.

4.1.2 Digital Signatures in Post-Quantum Cryptography

The advent of post-quantum cryptography, accompanied by the quest for cryptographic
primitives resilient to quantum attacks, has naturally extended to digital signature schemes
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[TSZ19]. The primary challenge in designing post-quantum digital signatures lies in bal-
ancing security and efficiency: these schemes must be constructed based on assumptions
that remain secure against adversaries with quantum computational capabilities, while
simultaneously maintaining high performance to align with the practical demands of their
numerous applications.

The call for the National Institute of Standards and Technology (NIST) Post-Quantum
Cryptography Standardization Project [Natng] has significantly accelerated the standard-
ization of such schemes. Numerous protocols have been proposed , relying on a variety
of mathematical assumptions, including lattice-based problems, multivariate polynomial
systems, hash-based constructions, and code-based assumptions. Each approach presents
distinct trade-offs concerning key size, signature size, and computational complexity.

4.2 Threshold Signatures

Threshold signatures extend the classical concept of digital signatures to a distributed
multi-party setting. Introduced to address the limitations of single-signer schemes, these
schemes enable a subset of t or more parties, out of a total n, to jointly generate a single
valid signature. This generalization was first explored in the context of threshold Schnorr
signatures [GJK+07; AF04; SS01], which demonstrated robustness even in the presence of
misbehaving parties.

Historical Overview Early threshold signature schemes relied heavily on distributed
key generation protocols [CGJ+99; AF04] and secure erasures to achieve adaptive secu-
rity. Notably, Abe-Fehr [AF04] introduced adaptively secure threshold Schnorr signatures
without relying on erasures but required the threshold t to be strictly less than n/2. Subse-
quent works improved upon this by addressing inefficiencies and exploring asynchronous
settings [GJK+07; CGJ+99; KRT24; CKM23; BCK+22].

In recent years, significant advancements have been made in constructing adaptively
secure threshold signatures without relying on impractical assumptions: techniques such
as the single inconsistent player (SIP) [JL00] and other adaptively secure models [CKM23;
BLS+24] have played a key role in achieving strong security guarantees under standard
assumptions. Recent threshold schemes [PL22; DR24] rely on assumptions like the AGM
and OMDL, ensuring tight security proofs.

Threshold Schnorr signatures continue to gain attention due to their simplicity and
efficiency [CKM23]. They provide a foundation for many modern threshold protocols,
including those relying on lattice-based constructions [EKT24; GKS24], and multi-signature
variants. This progress highlights the increasing importance of tightly secure threshold
signatures in applications such as blockchain systems, distributed key management, and
secure multi-party computation.
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The notion of tight security proofs has been a critical area of research for threshold
signatures [PL22; KRT24]. Threshold ECDSA signatures, for example, have been formally
analyzed under strict conditions for t = n− 1 [CGG+20]. In parallel, threshold schemes
have evolved to accommodate adversarial models where signers can be adaptively corrupted,
requiring resilience against partial forgeries and strong unforgeability guarantees [BLS+24].

Definition 4.2.1 (Threshold Signature Scheme). A threshold signature scheme TS is defined

as a tuple of PPT algorithms (Setup,KeyGen, Sign,Combine,Verify) satisfying the following:

• Setup(1λ): Generates the public system parameters params, where λ is the security

parameter.

• KeyGen(params) → (pk, {ski}ni=1): Generates a public key pk and a set of secret key

shares {ski}ni=1 for n participants.

• Sign(ski,m)→ σi: Given a secret key share ski and a messagem, each participant Pi

outputs a partial signature σi.

• Combine({σi}i∈S, params)→ σ: A deterministic algorithm that combines partial sig-

natures {σi}i∈S from a qualified set S ⊆ [n] with |S| ≥ t into a final signature σ.

• Verify(pk,m, σ) → {0, 1}: Given a public key pk, a message m, and a signature σ,

outputs 1 if σ is valid form under pk, and 0 otherwise.

A threshold signature schememust satisfy the following property: for any (S, pk, {ski}i∈S)←
KeyGen(params) and any messagem, it holds that:

Pr [Verify(pk,m, σ) = 1 | σ ← Combine({Sign(ski,m)}i∈S, params)] = 1.

4.2.1 Security Model

The security of a threshold signature scheme is formalized in the presence of adversarial
participants through the concept of existential unforgeability under chosen message attacks

(TS-EUF-CMA). The security game models a scenario where an adversary can adaptively
corrupt signers, query signing oracles, and attempt to forge signatures [BLT+24].

Definition 4.2.2 (TS-EUF-CMA Security). LetTS = (Setup,KeyGen, Sign,Combine,Verify)

be a (t, n)-threshold signature scheme. TS is existentially unforgeable under chosen message

attacks if, for all PPT adversaries A, it holds that

AdvTS-EUF-CMA
A,TS (λ) = Pr [TS-EUF-CMAA,TS(λ) = 1] ≤ ϵ

where ϵ is negligible in the security parameter λ.
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The game TS-EUF-CMAA,TS is defined in Protocol 1

Game TS-EUF-CMAA,TS(λ)

1: par← Setup(1λ)

2: (pk, sk1, . . . , skn)← Gen(par)
3: Sign := (Next,Sign0, Sign1,Sign2)
4: (m∗, σ∗)← ASign,Corrupt(par, pk)
5: if m∗ ∈ Queried then
6: return 0
7: end if
8: return Verify(pk,m∗, σ∗)

Protocol 1: The game TS-EUF-CMA for a (t, n)-threshold signature scheme TS.

Oracles

Oracle Corrupt(i)
1: if |Corrupted| ≥ t then
2: return ⊥
3: end if
4: Corrupted := Corrupted ∪ {i}
5: return (ski, state[·, i])

Oracle Next(sid, S,m)

1: if |S| ≠ t+ 1 ∨ S ̸⊆ [n] then
2: return ⊥
3: end if
4: if sid ∈ Sessions then
5: return ⊥
6: end if
7: Sessions := Sessions ∪ {sid}
8: message[sid] := m, signers[sid] := S

9: Queried := Queried ∪ {m}
10: for i ∈ S do
11: round[sid, i] := 0

12: end for
13: return state[·, i]

Oracle Sign0(sid, i)
1: if Allowed(sid, i, 0,⊥) = 0 then
2: return ⊥
3: end if
4: S := signers[sid],m := message[sid]
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5: (pm, St)← Sign0(S, i, ski,m)

6: pm1[sid, i] := pm, state[sid, i] := St
7: round[sid, i] := 1

8: return pm

Oracle Sign1(sid, i,M1)

1: if Allowed(sid, i, 1,M1) = 0 then
2: return ⊥
3: end if
4: (pm, St)← Sign1(state[sid, i],M1)

5: pm2[sid, i] := pm, state[sid, i] := St
6: round[sid, i] := 2

7: return pm

Oracle Sign2(sid, i,M2)

1: if Allowed(sid, i, 2,M2) = 0 then
2: return ⊥
3: end if
4: pm← Sign2(state[sid, i],M2)

5: round[sid, i] := 3

6: return pm

Algorithm Allowed(sid, i, r,M)

1: if sid /∈ Sessions then
2: return 0
3: end if
4: S := signers[sid], H := S \ Corrupted
5: if i /∈ H then
6: return 0
7: end if
8: if round[sid, i] ̸= r then
9: return 0
10: end if
11: if r > 0 then
12: parse (pmi)i∈S :=M
13: if pmi ̸= pmr[sid, i] then
14: return 0
15: end if
16: end if
17: return 1

Protocol 2: All the oracles needed in Game 1
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The game models realistic adversarial behavior:

• Adaptive Corruption: A may corrupt up to t − 1 signers, learning their secret
key shares and states. This models adversaries that adaptively compromise system
participants.

• Signing Queries: A can request partial signatures for chosen messages from any
uncorrupted signer, simulating legitimate signing interactions.

• Forgery Attempt: A outputs a candidate forgery (m∗, σ∗), aiming to produce a valid
signature on a messagem∗ without access to sufficient key shares.

The scheme remains secure if A cannot generate a valid signature outside the constraints of
the game.

4.2.2 Applications
Threshold signatures have numerous applications since they can be used in decentralized
systems –for example multi-signature transactions–. Recent developments in adaptive
security and tight proofs [BCK+22; CKM23] have significantly enhanced their applicability
in modern cryptographic systems. Below, three fundamental use cases where threshold
signatures provide significant benefits are outlined:

• Blockchain andMulti-Signature Transactions: threshold signatures enable secure
multi-party authorization without relying on a single trusted signer [Nak08; Woo14].
This allows decentralized custody and robust security for assets in blockchain systems.

• Secure Voting Protocols: in electronic voting systems, threshold signatures ensure
collective authorization of election outcomes while preserving anonymity.

• Distributed Key Management: threshold signatures provide a solution for pro-
tecting sensitive keys across multiple entities [Sho00]. Certificate Authorities (CAs)
and other security-critical systems use threshold techniques to distribute trust and
minimize single points of failure.

4.3 Protocols and Proof Techniques

4.3.1 Interactive proofs
Interactive proofs, introduced and analyzed in two foundational works by Babai [Bab85]
and Goldwasser, Micali, and Rackoff [GMR85], provide a framework where a prover and a
verifier interact to establish the validity of a statement, generalizing the verification process
used in NP 1 proofs. These systems generalize traditional proof verification by allowing the
verifier to interact with the prover adaptively, using randomness, and ensuring correctness.

1The complexity class NP includes languages for which a computationally unbounded prover can provide
a proof of membership that a polynomial-time verifier can efficiently check.

44



Signature via Fiat-Shamir

4

Definition 4.3.1. A language L is in the class NP if there exists a polynomial-time algorithm

RL such that:

L = {x | ∃π, |π| = poly(|x|) ∧RL(x, π) = 1}.

The string π is called the witness for the statement of x ∈ L. This captures the essence of
NP: the ability to verify efficiently when the correct witness is given.
Interactive proofs enhance this model by incorporating two key features:

• Both the prover and the verifier can use randomness, and the verifier’s decision must
be correct with high probability.

• The prover does not present a fixed witness but interacts with the verifier, responding
to queries in an exchange.

Definition 4.3.2. An n-round interactive proof system (P ,V) for a language L consists of two

randomized algorithms: a prover P and a verifier V , both modeled as probabilistic polynomial-

time Turing machines. The verifier V interacts with P and either accepts or rejects the input x.

It holds that:

• Completeness. The system is complete if, for any x ∈ L:

Pr[(P ,V)(x) = 1] ≥ 1− ϵ.

• Soundness. The system is sound if, for any x /∈ L and for any (possibly malicious)

prover P ′:
Pr[(P ′,V)(x) = 1] ≤ ϵ.

In this case, the quantity ϵ is called soundness error of the interactive proof.

Hence, a smaller soundness error indicates a higher level of security. For instance, in
practical applications, proof systems are often designed to achieve negligible soundness
error (e.g., ϵ = 2−λ, where λ is a security parameter) by increasing the number of repetitions.
Soundness error is a key metric in the design of cryptographic protocols, ensuring that the
system resists forgery and deception by untrustworthy provers.

4.3.2 Zero-Knowledge Interactive Proofs
Zero-knowledge interactive proofs extend interactive proofs by ensuring that no information,
apart from the validity of the statement, is leaked to the verifier.

Definition 4.3.3. An interactive proof system (P ,V) for a language L is zero-knowledge

if there exists a simulator Sim such that the transcript of the interaction is computationally

indistinguishable from the output of Sim. An interactive zero-knowledge proof satisfies:
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• Completeness. For x ∈ L:

Pr[(P ,V)(x) = 1] ≥ 1− ϵ.

• Soundness. For x /∈ L and any P ′:

Pr[(P ′,V)(x) = 1] ≤ ϵ.

• Zero-Knowledge. For every PPT verifier V∗, there exists a simulator Sim such that:

ViewV∗ [(P ,V∗)(x)] ≈ Sim(x).

Interactive zero-knowledge proofs extend interactive proofs by adding the zero-knowledge
property, ensuring that no information beyond the validity of the statement is revealed to
the verifier. This property can be classified based on the indistinguishability notion used.
Zero-knowledge proofs can be categorized as follows:

• Perfect Zero-Knowledge. The transcript of the interaction is identically distributed

to the output of a simulator Sim. This provides the strongest form of zero-knowledge.

• Statistical Zero-Knowledge. The transcript and the simulator’s output are statis-
tically close, meaning their distance is negligible but non-zero. This type is weaker
than perfect zero-knowledge.

• Computational Zero-Knowledge. The transcript and the simulator’s output are
computationally indistinguishable under the assumption that the verifier is com-
putationally bounded (PPT). This is the weakest but most commonly used form in
cryptographic applications.

4.3.2.1 Honest-Verifier Zero-Knowledge Proof An interactive proof is honest-verifier
zero-knowledge (HVZK) if the zero-knowledge property holds against an honest verifier
who follows the protocol correctly: for every honest verifier V , there exists a simulator Sim
such that the transcript is indistinguishable from the output of Sim.

4.3.3 Proofs of Knowledge
Proofs of knowledge formalize the notion of demonstrating not only the existence of a
witness w for a statement x ∈ L but also ensuring that the prover “knows” this witness.
These concepts are central to cryptographic protocols that require assurance of knowledge
rather than just mere existence.
To define this concept rigorously, it’s necessary to clarify what it means for a prover to
"know" a witness. Intuitively, a machine is said to know a value w if there exists an efficient
algorithm, called an extractor, that can compute w when given access to the prover.
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Definition 4.3.4. A party P∗ knows a witness w for a statement x ∈ L if there exists an

efficient algorithm Ext, given access to P∗, that outputs w such that RL(x,w) = 1. The

extractor’s runtime should be inversely related to the success probability of P∗.

This property transforms the traditional soundness guarantee into a knowledge-extraction
property, ensuring that any prover convincing a verifier can be used to efficiently recover a
valid witness.

Definition 4.3.5. For every efficient prover P∗ such that Pr[(P∗,V)(x) = 1] ≥ ϵ, there exists

an efficient extractor Ext that outputs w satisfying RL(x,w) = 1.

4.3.4 Zero-Knowledge Proofs of Knowledge
Zero-knowledge proofs of knowledge extend the concept of proofs of knowledge by incor-
porating the zero-knowledge property, ensuring that no information about the witness is
revealed during the proof process. Informally, a zero-knowledge proof of knowledge is an
interactive protocol between a prover P and a verifier V , where the verifier is convinced that
the prover knows a witness w for a given statement x ∈ L while learning nothing beyond
it. For a formal definition, given a two-party interactive protocol between PPT algorithms,
A with input a and B with input b where only B gets an output, two random variables are
introduced: ⟨A(a), B(b)⟩ denotes the output of the protocol, and View(A(a), B(b)) denotes
the transcript of the protocol.

Definition 4.3.6. A honest-verifier zero-knowledge argument of knowledge with soundness

error ε for a NP language

L = {x ∈ {0, 1}∗ : ∃w, (x,w) ∈ RL ∧ |w| = poly(λ)(|x|)}

with relationRL is a n-ronud interactive protocol between a prover P and a verifier V which

satisfies the following properties:

• Perfect Completeness: for every (x,w) ∈ RL, the verifier always accepts the interaction
with an honest prover:

Pr[⟨P(x,w),V(x)⟩ = 1] = 1.

• ε-Soundness: [BG93] for every PPT algorithm P̃ such that

Pr[⟨P̃(x),V(x)⟩ = 1] = ε̃ > ε,

there exists an extractor algorithm E which, given rewindable black-box access to P̃,

outputs a w′ satisfyingRL(x,w′) = 1 in time poly(λ)(λ, (ε̃− ε)−1) with probability at

least 1/2.

47



Chapter 4 Signature via Fiat-Shamir

4

• Zero-Knowledge: an argument of knowledge is (computationally, statistically, perfectly)

zero knowledge if there exists a PPT simulator Sim such that for every (x,w) ∈ RL,

Sim(x) ≡ View(P(x,w),V(x)),

where ≡ denotes computational, statistical, or perfect indistinguishability between the

distributions.

The knowledge error λ reflects the deviation from perfect knowledge extraction and can be
reduced to negligible levels through repetition.

4.3.4.1 Honest Verifier Zero-Knowledge Proof of Knowledge

Gap-HVZK A gap honest-verifier zero-knowledge argument of knowledge [CKY09] with
gap L′, where L′ ⊇ L is an NP language with relationRL′ , is defined as an honest-verifier
zero-knowledge argument of knowledge, with the following relaxation of ε-soundness: the
extractor E is only guaranteed to output a witness w′ such that (x,w′) ∈ L′. Concretely, in
the studied setting, the witness is a valid solution to the syndrome decoding problem, and
the language L′ contains all strings which are sufficiently close (in a well-defined sense) to
a valid solution. This is similar in spirit to the notion of soundness slack often used in the
context of lattice-based zero-knowledge proof, where the honest witness is a vector with
small entries, and the extracted vector can have significantly larger entries.

Honest-but-Curious Adversary. An honest-but-curious adversary, also known as a
semi-honest adversary, is an entity in a cryptographic protocol that follows the protocol’s
instructions correctly but attempts to learn additional information from the messages it
receives. While such an adversary does not deviate from the prescribed protocol, it may
analyze data passed through the protocol to infer private information. Security against
honest-but-curious adversaries is often achieved by ensuring that intermediate values are
computationally indistinguishable from random, preventing the adversary from gaining
unauthorized insights. This model is used in multi-party computation (MPC) and secure
computation settings where participants are assumed to be passive but inquisitive.

Malicious Adversary. A malicious adversary is an adversary that may deviate arbitrar-
ily from the protocol’s instructions, including sending incorrect or malformed messages,
modifying computations, or working with other adversaries to compromise the protocol’s
security. Protection against malicious adversaries requires more robust security measures to
ensure that incorrect behavior can be detected and mitigated. Hence protocols secure against
malicious adversaries are typically more complex and resource-intensive than those secure
against honest-but-curious adversaries, as they must account for any possible deviation or
manipulation by participants: they use more complex strategies including zero-knowledge
proofs, consistency checks, or verifiable computation.
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4.3.5 Fiat-Shamir Heuristic
The Fiat-Shamir heuristic [FS87] provides a method to transform interactive zero-knowledge
proof systems 4.3.2 Σ into non-interactive zero-knowledge proofs (NIZKs). Specifically, it
allows a prover P to prove membership of a word x in a language L by eliminating the need
for interaction: for this reason, it has been adapted to numerous ZKPoK (see Section 4.3.4),
obtaining zero-knowledge-based signatures. The Fiat-Shamir paradigm is typically applied
to interactive proof systems with multiple rounds and in the simplest case -i.e. a three rounds
protocol- the process proceeds at a high level in this way: the prover first computes the
initial flow of the protocol Σ, denoted as c, which corresponds to the commitments. Then, a
challenge e is computed as e← H(x, c), whereH represents a cryptographic hash function.
The prover completes the protocol using e as the challenge, generating the final response.
While the Fiat-Shamir heuristic is widely used due to its efficiency, its security cannot be
guaranteed under any standard assumption for hash functions. Instead, the heuristic can be
proven secure in the random oracle model (see Section 3.4.7.1), where H is modeled as an
idealized random function. However, this introduces a gap between theory and practice, as
random oracles cannot be instantiated in practice due to their exponential size.

4.3.5.1 Transition from 5-Round ZKPoK to Signatures In this manuscript, this
paradigm will be extensively used in its slightly more complex form, which allows for
working with 5-round protocols.
For a NP language L = {x ∈ {0, 1}∗ : ∃w, (x,w) ∈ RL ∧ |w| = poly(λ)(|x|)} with
instance x and witness w, the transformation of a 5-round zero-knowledge protocol (P, V )
into a signature scheme can be outlined as follows:

Fiat-Shamir Transform on a 5-Round Protocol

KeyGen(1λ): Inputs: A security parameter λ.

Generate a key pair (pk, sk) based on the structure of the underlying ZK
protocol.

Outputs: The public key pk and private key sk.

Sign(sk,m): Inputs: A secret key sk and a message m.

1. Simulate the prover’s role in the (P, V ) protocol:
(a) Generate a first commitment c1 using the witness w and a randomness

r1.
(b) Compute the first challenge as ch1 ← H(c1,m) using a cryptographic

hash function H .
(c) Generate a second commitment c2 based on ch1 and an additional

randomness r2.
(d) Compute the second challenge as ch2 ← H(c1, c2,m).
(e) Compute the final response R based on w, c1, c2, ch1, ch2, and all the

used randomness.
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2. Obtain the signature depending on how it is defined in the underlying ZKpoK
σ ← (c1, c2, R).

Outputs: The signature σ on the messagem.

Verify(pk,m, σ): Inputs: A public key pk, a messagem, and a signature σ = (c1, c2, R).

1. Recompute the challenges:
(a) Compute ch1 ← H(c1,m).
(b) Compute ch2 ← H(c1, c2,m).

2. Verify R by checking the consistency of commitments and responses ac-
cording to the verification rules of the original 5-round protocol.

Outputs: 1 if the verification succeeds, 0 otherwise.

Signature schemes based on the Fiat-Shamir paradigm exhibit performance characteristics
inherited from the underlying ZK protocol.
To obtain low soundness error for the security of the signature defined by the Fiat-Shamir
heuristic, multiple parallel repetitions of the base ZKPoK are required. For example, tradi-
tional ZKPoKs, like Stern’s protocol, have a per-round soundness error of 2

3
: this implies

that to achieve a negligible error of 2−128, the protocol must be repeated τ times, where:
τ ≥ log2/3(2

−128) ≈ 216. Of course, this repetition creates substantial communication and
computational overhead.
The use of an MPC-in-the-Head (MPCitH) protocol in the definition of the ZKPoK addresses
this problem by simulating a secure multiparty computation (MPC) within the prover’s
head, where virtual parties jointly emulate the protocol. The prover then commits to the
parties’ views, and the verifier requests partial openings to verify correctness. This approach
compresses the communication cost by reducing the data that needs to be transmitted and
verified while maintaining the desired security guarantees.
Furthermore, as it will be argued in Chapter 3, using tools like puncturable pseudorandom
functions (PPRFs) and GGM trees allows MPCitH to represent and verify iterations so
efficiently that τ = 8 to τ = 16 repetitions are sufficient to achieve 128-bit security,
drastically reducing the overhead compared to traditional methods.

4.4 MPC and MPC-in-the-Head

The MPC-in-the-head paradigm, introduced in the seminal work of [IKO+07], provides a
compiler that, given an n-party secure computation protocol for computing a function f ′

in the honest-but-curious model, produces an honest-verifier zero-knowledge argument of
knowledge of x such that f(x) = y, for some public y, where f ′ is a function related to f .
At a high level (and specializing to MPC in the head with all-but-one additive secret sharing –
the original compiler is more general), the compiler proceeds by letting the prover additively
share the witness x into (x1, · · · , xn) among n virtual parties (P1, · · · , Pn), run in his head
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an MPC protocol for securely computing f ′(x1, · · · , xn) = f(
∑

i xi) (where the sum is over
some appropriate ring), and commit to the views of all parties. Then, the verifier queries a
random size-(n− 1) subset of all views, which the prover opens. The verifier checks that
these views are consistent and that the output is correct She accepts if all checks succeed.
Soundness follows from the fact that the MPC protocol is correct, hence if the prover does
not know a valid x, one of the views must be inconsistent with the output being correct
(the soundness error is therefore 1/n). Honest-verifier zero-knowledge follows from the
fact that the MPC protocol is secure against passive corruption of n− 1 parties (and the fact
that n− 1 shares of x leak no information about x).
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This chapter introduces a post-quantum digital signature scheme based on the Regular
Syndrome Decoding assumption [AFS03; FGS07]. A 5-round zero-knowledge proof system
using the MPC-in-the-Head paradigm [IKO+07; FJR22] is described and compiled into a
compact signature via the Fiat-Shamir heuristic [FS87]. A key contribution is the analysis
of soundness in a relaxed setting, allowing almost regular witnesses, together with an
exploration of the RSD assumption and related cryptanalytic attacks [CRR21; BCG+22]. The
resulting scheme achieves competitive performance in size and efficiency.
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Notation. Given an integer n ∈ N, the set {1, · · · , n}will be denoted by [n]. Bold lowercase
will be used for vectors and uppercase for matrices. Given a vector v ∈ Fn and a permutation
π : [n] 7→ [n], π(v) is used to denote the vector (vπ(1), vπ(2), · · · , vπ(n)). For u,v ∈ {0, 1}n,
u⊕v represents the bitwise-XOR of u and v, u⊙v represents the bitwise-AND (also called
Schur product, or Hadamard product) of u and v, and HW(u) denotes the Hamming weight
of u (i.e. its number of nonzero entries). For a set S, s ←$ S indicates that s is sampled
uniformly from S. For a probabilistic Turing machineA and an input x, y ←$ A(x) indicates
that y is sampled by runningA on x with a uniform random tape, or y ← A(x; r) when the
random coin is made explicit.
Given a vector u ∈ Zℓ

T and an integer T , writing (u1, · · · ,un) ←$ JuKT indicate that the
vectors ui (called the i-th additive share of u) are sampled uniformly at random over Zℓ

T

conditioned on
∑

i ui = u. This notation is sometimes abused by writing JuKT to denote
the tuple (u1, · · · ,un). For a vector v ∈ {0, 1}ℓ, JvKT with T > 2 will be written using the
natural embedding of {0, 1} into ZT .

5.1 Problem Statement and Model

While it will be used the MPC in the head paradigm, as in previous works [GPS21; FJR21;
BGK+22; FJR22], the choice of the underlying MPC protocol departs significantly from all
previous work: the starting point is the observation that checking H · x = y and checking
the structure of x can each be done using linear operations, over F2 for the former, and
over Z for the latter. In standard MPC protocol, linear operations over a ringR are usually
“for free”, provided that the values are shared overR. Therefore, the only component that
requires communication is a share conversion mechanism, to transform shares over F2 into
shares over a larger integer ring. A share conversion protocol is introduced, which exhibits
very good performance. However, the presented protocol works in the preprocessing model,
where the parties are initially given a correlated random string by a trusted dealer. The use
of preprocessing in the MPC in the head paradigm has appeared in previous works [KKW18;
GPS21], and handling the preprocessing phase usually incurs a significant communication
overhead (due to the need to check that the prover correctly emulated it).
Nevertheless, a core technical contribution of this chapter is a method, tailored to the chosen
setting, to handle the preprocessing phase for free (i.e. without incurring any communication
overhead). At a high level, it is possible to achieve this by letting the verifier randomly shuffle

the preprocessing strings, instead of verifying them. A careful and non-trivial combinatorial
analysis shows that a cheating prover has a very low probability of providing an accepting
proof for any choice of the initial (pre-permutation) preprocessing strings, over the choice of
the verifier permutation. Furthermore, it is possible to observe that the cheating probability
becomes much lower by focusing on cheating provers using a witness that is far from a
regular witness (in the sense that it has multiple non-weight-1 blocks). For an appropriate
setting of the parameters, the hardness of finding solutions close to regular witnesses becomes
equivalent to the standard regular syndrome decoding assumption (where the solution must
be strictly regular), hence this relaxation of the soundness still yields a signature scheme
(after compilation with Fiat-Shamir) whose security reduces to the standard RSD assumption.
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To complement the analysis, an analysis of the RSD assumption is also provided with a focus
on the relation between RSD and the standard syndrome decoding assumption depending
on the parameter regime, reviewing existing attacks on RSD from the literature, fine-tuning,
and improving the attacks on several occasions. Eventually, a new “adversary-optimistic”
attack against RSD is also developed, showing how a linear-time solution to the approximate
birthday problem would yield faster algorithms for RSD (in the parameter choices, it is
assumed that such an algorithm exists for the sake of choosing conservative parameters).

5.1.1 Performances
While analyzing the proposed approach is relatively involved, the protocol structure is
extremely simple. The computation of the zero-knowledge proof is mostly dominated by
simple XORs, calls to a length-doubling PRG (which can be instantiated very efficiently from
AES over platforms with hardware support for AES), and calls to a hash function. This is in
contrast with previous works, which always involved much more complex operations, such
as FFTs [FJR22] or compositions of random permutations [FJR21; BGK+22]. While there is
not an optimized implementation of the signature scheme (even if there is an implementation
for the improved signature in the next chapter), it is possible to carefully estimate the runtime
of all operations using standard benchmarks, making conservative choices when the exact
cost is unclear (the calculations are explained in details in Section 5.4.2.1). The conservative
choices likely overestimate the real runtime of these operations: of course, the runtimes
extrapolated this way ignore other costs such as the cost of copying and allocating memory.
Nevertheless, in Banquet, another candidate post-quantum signature scheme using the
MPC-in-the-head paradigm, the memory costs were estimated to account for 25% of the
total runtime. Therefore, one can expect the extrapolated number to be relatively close to
real runtimes with a proper implementation.
For communication, eight sets of parameters are provided. The first four parameters use
RSD parameters which guarantee a security reduction to the standard RSD assumption, and
one can view them as the main candidate parameters. They correspond respectively to a
fast signature (rsd-f), two medium signatures (rsd-m1 and rsd-m2) achieving a reasonable
speed/size tradeoff, and a short signature (rsd-s). The last four parameters (arsd-f, arsd-m1,
arsd-m2, and arsd-s) use a more aggressive setting of the RSD parameters, where security
is reduced instead to a more exotic assumption, namely, the security of RSD when the
adversary is allowed to find an almost regular solution (with some fixed number of “faulty
blocks” allowed). Since this variant has not yet been thoroughly analyzed, these parameters
can mainly be viewed as a motivation for future cryptanalysis of variants of RSD with
almost-regular solutions.
In Table 5.1 it is possible to find the results of the estimations and the comparison of them
to the state-of-the-art in code-based signature schemes. Compared to the best-known code-
based signature scheme of [FJR22], the conservative scheme (under standard RSD) achieves
significantly smaller signature sizes than their scheme based on syndrome decoding over
F2 (12.52 KB for the fast variant versus 17 KB for Var2f, and 9.69 to 8.55 KB for the shorter
variants versus 11.8 KB for Var2s). In terms of runtime, the estimates are significantly faster
than their reported runtimes (except rsd-s, which is on par with Var2s), hence the runtimes
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should remain competitive with a proper implementation, even if memory costs turn out
to be higher than expected. Their most efficient scheme (variants Var3f and Var3s) relies
on the conjectured hardness of syndrome decoding assumption over F256, which has been
much less investigated.

5.2 Zero-Knowledge Proof for Regular Syndrome Decod-
ing

5.2.1 Template construction
The starting point is the construction of a zero-knowledge proof of knowledge of a solution
to an instance of the syndrome decoding problem, using the MPC-in-the-head paradigm.
More generally, the presented protocol handles naturally any syndrome decoding under

N-linear constraints problem for some N-linear constraint (L,v), see Definition 3.5.2. To this
end, it will be presented an N -party protocol Π where the parties have shares of a solution
x ∈ {0, 1}K to the syndrome decoding problem, and securely output H · x mod 2 and L · x
over N. Given the output of the MPC protocol, the verifier checks:

(1) that the execution (in the prover’s head) was carried out honestly (by checking a
random subset of N − 1 views of the parties),

(2) that the two outputs are equal to y and v respectively.

The high-level intuition of the proposed approach is the following: in MPC protocols, it is
typically the case that linear operations are extremely cheap (or even considered as “free”)
because they can be computed directly over secret values shared using a linear secret sharing
scheme (such as additive sharing, or Shamir sharing), without communicating. In turn,
one can observe that several variants of the syndrome decoding problem reduce to finding
a solution x that satisfies two types of linear constraints: one linear constraint over F2

(typically, checking that H · x = y given a syndrome decoding instance (H, y)) and one
linear constraint over N (e.g. checking that ⟨x,1⟩ = w, i.e. that the Hamming weight of
x is w). Now, an appropriate choice of linear secret sharing scheme can make any one of
these two constraints for free in Π: if x is additively shared over F2, then verifyingH ·x = y
is for free, while if x is additively shared over a large enough integer ring R = ZT (such
that no overflow occurs when computing L · x over N for any x ∈ {0, 1}K ), then verifying
L · x = v is for free.

5.2.1.1 Share conversion. By the above observation, the only missing ingredient to
construct Π is a share conversion mechanism: a protocol where the parties start with F2-
shares JxK2 of x, and securely convert them toR-shares JxKT of x. The next observation is
that for any integer ring ZT , this can be done easily using appropriate preprocessing material.
Consider the case of a single bit a ∈ {0, 1}; the parties initially have F2-shares JaK2 of a.
Suppose now that the parties receive the (JbK2, JbKT ) for a random b ∈ {0, 1} from a trusted
dealer. The parties can locally compute Ja⊕ bK2 and open the bit c = a⊕ b by broadcasting
their shares. Now, since a = c⊕ b = c+ b− 2b over N, only two cases may arise:
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Table 5.1: Comparison of the signature scheme with other code-based signature schemes from the

literature, for 128 bits of security. All timings are in milliseconds. Reported timings are those extracted

in [FJR22] from the original publications, using a 3.5 GHz Intel Xeon E3-1240 v5 for Wave, a 2.8 GHz

Intel Core i5-7440HQ for Durandal, and a 3.8 GHz Intel Core i7 for [FJR21; FJR22]. The timings are

estimated runtimes with the methodology given in Section 5.4.2.1.

Scheme |sgn| |pk| tsgn Assumption
Wave 2.07 KB 3.2 MB 300 large-weight SD over F3,

(U,U + V )-codes indist.
Durandal - I 3.97 KB 14.9 KB 4 Rank SD over F2m

Durandal - II 4.90 KB 18.2 KB 5 Rank SD over F2m

LESS-FM - I 9.77 KB 15.2 KB - Linear Code Equivalence
LESS-FM - II 206 KB 5.25 KB - Perm. Code Equivalence
LESS-FM - III 11.57 KB 10.39 KB - Perm. Code Equivalence
[GPS21] - 256 24.0 KB 0.11 KB - SD over F256

[GPS21] - 256 19.8 KB 0.12 KB - SD over F1024

[FJR21] (fast) 22.6 KB 0.09 KB 13 SD over F2

[FJR21] (short) 16.0 KB 0.09 KB 62 SD over F2

[BGK+22] Sig1 23.7 KB 0.1 KB - SD over F2

[BGK+22] Sig2 20.6 KB 0.2 KB - (QC)SD over F2

[FJR22] - Var1f 15.6 KB 0.09 KB - SD over F2

[FJR22] - Var1s 10.9 KB 0.09 KB - SD over F2

[FJR22] - Var2f 17.0 KB 0.09 KB 13 SD over F2

[FJR22] - Var2s 11.8 KB 0.09 KB 64 SD over F2

[FJR22] - Var3f 11.5 KB 0.14 KB 6 SD over F256

[FJR22] - Var3s 8.26 KB 0.14 KB 30 SD over F256

Our scheme - rsd-f 12.52 KB 0.09 KB 2.8* RSD over F2

Our scheme - rsd-m1 9.69 KB 0.09 KB 17* RSD over F2

Our scheme - rsd-m2 9.13 KB 0.09 KB 31* RSD over F2

Our scheme - rsd-s 8.55 KB 0.09 KB 65* RSD over F2

Our scheme - arsd-f 11.25 KB 0.09 KB 2.4* f -almost-RSD over F2

Our scheme - arsd-m1 8.76 KB 0.09 KB 15* f -almost-RSD over F2

Our scheme - arsd-m2 8.28 KB 0.09 KB 28* f -almost-RSD over F2

Our scheme - arsd-s 7.77 KB 0.09 KB 57* f -almost-RSD over F2

* Runtimes obtained using conservative upper bounds on the cycle counts of all
operations as described in Section 5.4.2.1, and assuming that the signature is
run on one core of a 3.8GHz CPU. I stress that these parameters ignore costs
such as copying or allocating memory, and should be seen only as a first-order
approximation of the real runtimes.
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1. c = 1. Then a = 1− b and so JaKT = J1− bKT .

2. c = 0. Then a = b and so JaKT = JbKT

Therefore, the parties can compute JaKT as c ·J1−bKT +(1−c) ·JbKT . This extends directly to
an integral solution vector x. Hence, in the protocol Π, before the execution, a trusted dealer
samples a random vector r ←$ {0, 1}K and distributes (JrK2, JrKT ) to the parties, where
T is such that no overflow can occur when computing L · x mod T (to simulate N-linear
operations). A similar technique was used previously, in a different context, in [RW19;
EGK+20].

5.2.1.2 The use of an MPC protocol with a preprocessing phase Building on this
observation, it will be introduced an MPC protocol in the preprocessing model, where the
trusted dealer picks a random bitstring r, and distributes (JrK2, JrKT ) to the parties. On
input additive shares of the witness x over F2, the parties can open z = r + x. Using the
above observation, all parties can reconstruct shares JxKT . Then, any linear equation on
x over either F2 or ZT can be verified by opening an appropriate linear combination of
the F2-shares or of the ZT shares (this last step does not add any communication when
compiling the protocol into a zero-knowledge proof).
At a high level, there are two standard approaches to handling preprocessing material
using MPC-in-the-head. The first approach was introduced in [KKW18]. It uses a natural
cut-and-choose strategy: the prover plays the role of the trusted dealer, and executes many
instances of the preprocessing, committing to all of them. Afterwards, the verifier asks for
openings of a subset of all preprocessings, and checks that all opened strings have been
honestly constructed. Eventually, the MPC-in-the-head compiler is applied to the protocol,
using the unopened committed instances of the preprocessing phases. This approach is
very generic, but induces a large overhead, both computationally and communication-wise.
The second approach is tailored to specific types of preprocessing material, such as Beaver
triples. It is inspired by the classical sacrificing technique which allows one to check the
correctness of a batch of Beaver triples while sacrificing only a few triples. It was used in
works such as Banquet [BDK+21], or more recently in [FJR22].
Unfortunately, the first approach induces a large overhead, and the second one is tailored to
specific types of preprocessing material. Hence in the discussed context, the structure of the
preprocessing material makes it unsuitable. Fortunately, it will be shown that, in the chosen
setting, the preprocessing material can be handled essentially for free.
The technique works as follows: let the prover compute (and commit to) the preprocessing
material (JrK2, JrKT ) himself, but require that the coordinates of r are shuffled using a

uniformly random permutation (chosen by the verifier) before being used in the protocol.
Crucially, as shown in the analysis, the verifier never needs to check that the preprocessing
phase was correctly executed (which would induce some overhead): instead, it will be
demonstrated that a malicious prover (who does not know a valid witness) cannot find any

(possibly incorrect) preprocessing material that allows him to pass the verification with the

randomly shuffled material with high probability.
Fundamentally, the intuition is the following: it is easy for the malicious prover to know
values x, x′ such that H · x = y mod 2 and L · x′ = v mod T . To pass the verification test
in the protocol, a malicious prover must therefore fine-tune malicious preprocessing strings
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(s, t) such that the value z⊙ (1− t) + (1− z)⊙ t, computed from z = s⊕ x for some x
such that H · x = y mod 2, is equal to a value x′ such that L · x′ = v mod T (recall that in
the honest protocol, the prover should use s = t = r). But doing so requires a careful choice
of the entries (si, ti): intuitively, the prover needs si = ti whenever xi = x′i, and si = 1− ti
otherwise. However, when the coordinates of (s, t) are randomly shuffled, this is not the
case with high probability. While the high-level intuition is clear, formalizing it requires
particularly delicate combinatorial arguments.
Let (H, y) be an instance of the N-linear syndrome decoding problem with parameters
(K, k, w) and feasible N-linear constraint (L,v). Let x ∈ {0, 1}K denote a solution for
this instance. One can construct an n-party protocol Π in the preprocessing model, where
the parties’ inputs are additive shares of x over F2. The protocol Π securely computes
H · x mod 2 and L · x in the honest-but-curious setting, with corruption of up to n − 1
parties. Let par← (K, k, w, c,H, L). The protocol Πpar is represented in Protocol 3.

Protocol Πpar

Parameters: The protocolΠ operates with n parties, denoted (P1, · · · , Pn). (K, k,w, c) are
four integers with K > k > w and k > c. H ∈ {0, 1}k×K and L ∈ Nc×K are public
matrices. Let par← (K, k,w, c,H,L), and let T ← ∥L · 1∥1. The vector (x1, · · · ,xn)

is forming additive shares JxK2 over F2 of a vector x ∈ {0, 1}K .

Inputs: Each party Pi has input xi ∈ {0, 1}K .

Preprocessing: The trusted dealer samples r←$ {0, 1}K .
He computes JrK2 = (s1, · · · , sn) ←$ Share2(r) and JrKT = (t1, · · · , tn) ←$

ShareT (r), viewing bits as elements of the integer ring ZT in the natural way.
He distributes (si, ti) to each party Pi.

Online Phase: The protocol proceeds in broadcast rounds.

The parties compute Jy′K2 = H · JxK2 and JzK2 = JrK2 + JxK2. All parties open y′

and z.

The parties compute Jv′KT ← L · (z⊙ J1− rKT + (1− z)⊙ JrKT ), viewing z as a
vector over ZT in the natural way.

All parties open v′.

Output: The parties output (y′,v′).

Protocol 3: Protocol Πpar for securely computing H · x mod 2 and L · x in the honest-but-curious up to n − 1
corruptions.
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5.2.1.3 A template zero-knowledge proof. Building upon the above, a template zero-
knowledge proof is described in Protocol 4 Looking ahead, the final zero-knowledge proof
does

(1) instantiate this template for a carefully chosen flavor of syndrome decoding with
N-linear constraints,

(2) introduce many optimizations to the proof, building both upon existing optimizations
from previous works, and new optimizations tailored to the chosen setting.

5-round zero-knowledge proof

Parameters. (K, k,w, c) are four integers with K > k > w and k > c. H ∈ {0, 1}k×K

and L ∈ Nc×K are public matrices. y ∈ {0, 1}k and v ∈ {0, 1}c are public vectors. Let
par← (K, k,w, c,H,L), and let T ← ∥v∥1. Let Commit be a non-interactive commitment
scheme.
Inputs. The prover and the verifier have common input par and (y,v), which jointly
form an instance of the N-linear syndrome decoding problem. The prover additionally
holds a witness x ∈ {0, 1}K which is a solution of the instance: H · x = y mod 2 and
L · x = v(= v mod T ).
Witness Sharing. The prover samples (x1, · · · ,xn) ←$ Share2(x). Each share xi is the
input of the virtual party Pi.
Round 1. The prover runs the trusted dealer of Πpar and obtains
((s1, · · · , sn), (t1, · · · , tn)) = (JrK2, JrKT ). He computes and sends ci ←$ Commit(xi, si, ti)

for i = 1 to n to the verifier.
Round 2. The verifier picks a uniformly random permutation π ←$ SK and sends it to the
prover.
Round 3. The prover runs the online phase of Πpar where the parties (P1, · · · , Pn) have
inputs (x1, · · · ,xn), using the shuffled preprocessing material (Jπ(r)K2, Jπ(r)KT ). For each
party Pi, letmsgi = (y′i, zi,v

′
i) denote the list of all messages sent by Pi during the execution.

The prover sends (msg1, · · · ,msgn) to the verifier.
Round 4. The verifier chooses a challenge d ∈ [n] and sends it to the prover.
Round 5 The prover opens all commitments cj for j ̸= d to the verifier.
Verification. The verifier checks:

• that all commitments were opened correctly;

• that the output of Πpar with transcript (msg1, · · · ,msgn) is equal to (y,v);

• that the messages msgj sent by Pj are consistent with (xj , sj , tj).

The verifier accepts if and only if all checks succeed.

Protocol 4: Template 5-round zero-knowledge proof for N-linear syndrome decoding using MPC-in-the-head with

the protocol Πpar
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5.2.2 Concrete Instantiation for Regular Syndrome Decoding
With the template 5.2.1.3 construction in mind, which works for all choices of syndrome
decoding problem with N-linear constraints, it is now possible to focus on one specific
problem. The target of this manuscript is the regular syndrome decoding problem, where the
linear constraint states that the witness x should be a concatenation of w unit vectors (see
Section 3.5.3). The rationale behind this choice stems from the communication complexity
of the template zero-knowledge proof from Protocol 4. Intuitively, the communication is
dominated by the cost of transmitting the vectors over the ring ZT (i.e. the ti vectors):
sending each such vector requiresK · log T bits. Looking ahead, even with proper optimiza-
tions, the zero-knowledge proof cannot be competitive with state-of-the-art constructions
communication-wise whenever the value of T = ∥L · 1∥1 is large.
Typically, for the standard syndrome decoding problem T = K , hence the communication
involves aK · logK term, and the overhead is too large (when choosing concrete parameters,
K is typically in the thousands, hence K logK is of the order of a few kilobytes, which
becomes a few dozen kilobytes after parallel repetitions). On the other hand, regular
syndrome decoding appears to minimize this cost: the value of T is onlyK/w. Hence, by
choosing the weight appropriately, one can reduce the value of T .
Moving forward, attention will be directed toward the regular syndrome decoding problem
as a primary instantiation of the template. Looking ahead, the goal is to minimize the value
of T = K/w. Concretely, as shown in Section 5.2.2.1, a standard Chinese remainder theorem
trick allows working over the ring ZT/2 instead of ZT , as long as gcd(T/2, 2) = 1 (i.e. T/2
is odd; intuitively, this is because the “mod 2 part” of the equation L · x = v mod T can be
obtained at no cost from the F2-sharing of x, hence it only remains to get L · x mod T/2
and use the CRT to reconstruct L · x mod T ). The smallest possible value of T/2 satisfying
the above constraint is T/2 = 3, implying T = K/w = 6. Therefore, w = K/6 is set,
which is the smallest value of w that sets the bit-size of the vectors ti to its minimal value
of K · log(T/2) = K · log 3.

5.2.2.1 Optimization Starting from the template given in the previews section, it is
possible to refine it by using various optimizations: some of those are standard, used e.g. in
works such as [KKW18; BDK+21; FJR22], and others are new, tailored optimizations.

Using a collision-resistant hash function. The “hash trick” is a standard approach
to reduce the communication of public coin zero-knowledge proofs. It builds upon the
following observation: in a zero-knowledge proof, the verification equation on a list of
messages (m1, · · · ,mℓ) often makes the messages reverse samplable: the verifier can use the
equation to recover what the value of (m1, · · · ,mℓ) should be. Whenever this is the case, the
communication can be reduced by sending h = H(m1, · · · ,mℓ) instead of (m1, · · · ,mℓ),
whereH denotes collision-resistant hash function. The verification proceeds by reconstruct-
ing (m1, · · · ,mℓ) and checking that h = H(m1, · · · ,mℓ), and security follows from the
collision resistance of H . As h can be as small as 2λ-bit long, this significantly reduces
communication.
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Using regular syndrome decoding in systematic form. Without loss of generality, it is
possible to set H to be in systematic form, i.e. setting H = [H ′|Ik], where Ik denotes the
identity matrix over {0, 1}k×k. This strategy was used in the recent code-based signature
of [FJR22]. UsingH in systematic form, and writing x as x = (x1|x2)where x1 ∈ FK−k

2 , x2 ∈
Fk
2 , allows to haveHx = H ′x1+x2 = y. Since the instance (H, y) is public, this implies that

the prover need not share x entirely over F2: it suffices for the prover to share x1, and all
parties can reconstruct Jx2K2 ← y⊕H ′ · Jx1K2. Additionally, the parties need not opening z
entirely: denoting π(r) = (r1|r2), the parties can open instead Jz1K2 = Jx1⊕ r1K2 and define
z2 = H ′z1⊕ y. This way, they can reconstruct the complete z as z = (z1|z2). The rest of the
protocol proceeds as before. Following the above considerations, and to simplify notations,
from now on the short vector of length K − k in the small field (previously indicated with
x1) is referred to simply as x, and the long vector of sizeK in the large field is referred to as
x̃ (i.e. x̃ = (x|H ′x⊕ y)).

Exploiting the regular structure of x. One can further reduce the size of x using an
optimization tailored to the RSD setting: its regular structure allows to divide x into w
blocks each of size T = K/w. But since each block has exactly one non-zero entry, given
the first T − 1 entries (b1, · · · , bT−1) of any block, the last entry can be recomputed as
bT = 1⊕

⊕T−1
i=1 bi. In the zero-knowledge proof, the prover only shares T − 1 out of the T

bits in each block of x among the virtual parties. Similarly, the size of r1 and z1 are reduced
by the same factor, since only T − 1 bits of each block must be masked.
Denoting x1, · · · , xw the blocks of x, therefore:

x =

x1

x1
1 x

1
2 · · ·1−

∑T−1
i=1 x1

i

xw

xw
1 x

w
2 · · ·1−

∑T−1
i=1 xw

i

Reducing the size of the messages. With the above optimizations, the equation Hx̃ =
H ′x⊕x2 = y needs not to be verified anymore: it now holds by construction, as x̃ is defined
as (x|H ′x⊕ y). This removes the need to include yi in the messagesmsgi sent by each party
Pi; this is in line with previous works, which also observed that linear operations are for free
with proper optimizations. The message of each party becomes simplymsgi = (zi,v

′
i). Note

that in this concrete instantiation the entries of v′i are computed as ⟨1, x̃i
j⟩, where the vectors

x̃i
j for j = 1 to w are the blocks of Pi’s share of the vector z⊙ (1− π(t)) + (1− z)⊙ π(t).

Using the Chinese remainder theorem. In the zero-knowledge proof, verifying any
linear equation modulo 2 on the witness x̄ is for free communication-wise. Ultimately,
the verifier wants to check that ⟨x̄j,1⟩ = 1 mod T . Setting T to be equal to 2 modulo
4 guarantees that T is even, and gcd(T/2, 2) = 1. Hence, it suffices to work over the
integer ring ZT/2 instead of ZT , to let the verifier check the equation ⟨x̄j,1⟩ = 1 mod T/2
for j = 1 to w. Indeed, by the Chinese remainder theorem, together with the relations
⟨x̄j,1⟩ = 1 mod 2 (which can be checked for free), this ensures that ⟨x̄j,1⟩ = 1 mod T
for j = 1 to w. This reduces the size of the ti vectors from K · log T to K · log(T/2). As
outlined in Section 5.2.2, if T = 6 in the concrete instantiation, hence the protocol has to
be executed over the integer ring Z3, the smallest possible ring satisfying the coprimality
constraint.
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Compressing share with PRG. Another standard technique from [KKW18] uses a pseu-
dorandom generator to compress all-but-one shares distributed during the input sharing and
preprocessing phases. Indeed, writing JxK2 = (x1, . . . ,xN), then xN = x−

⊕N−1
i=1 xi mod 2.

Denoting also JrK2 = (s1, . . . , sN) and JrKT = (t1, . . . , tN), it holds that
∑N

i=1 ti =⊕N
i=1 si mod T , which rewrites to tN =

⊕N
i=1 si −

∑N−1
i=1 ti mod T .

One can compress the description of these shares by giving to each party Pi a λ−bit seed sdi
and letting each of them apply a pseudorandom generator to sdi to obtain (pseudo)random
shares xi, si and ti. All shares of s can be compressed this way (since s need just be a random
vector), and all but one share of JxK2 and t. The missing shares can be obtained by letting
PN receive an auxiliary string auxN defined as:

auxN ←

(
x−

N−1⊕
i=1

xi mod 2,
N⊕
i=1

si −
N−1∑
i=1

ti mod T

)
.

The information shared with each party will be denoted as the state of the party. For
each Pi for 1 ≤ i ≤ N − 1, it therefore holds that statei = sdi. The last party PN has
stateN = (sdN |auxN): in the online phase of the protocol each party sdN can be used to
randomly generate sN.

Generating the seeds from a puncturable pseudorandom function. To further reduce
the overhead of communicating the seeds, it is possible to apply the standard optimization
of generating all seeds from a PPRF (see Section 3.4.5). Concretely, once a master seed
sd∗ is introduced, it is possible to generate N minor seeds sd1, · · · , sdN as the leaves of
a binary tree of depth logN , where the two children of each node are computed using a
length-doubling pseudorandom generator. This way, revealing all seeds except sdj requires
only sending the seeds on the nodes along the co-path from the root to the j-th leave, which
reduces the communication from λ · (N − 1) to λ · log n. Note that due to this optimization,
when compiling the proof into a signature, collisions among sd∗ for different signatures
are likely to appear after 2λ/2 signatures. To avoid this issue, an additional random salt of
length 2λ must be used, see Section 5.4.

Using deterministic commitments. As in [KKW18] and other previous works, all com-
mitted values are pseudorandom. Therefore, the commitment scheme does not have to be
hiding: in the random oracle model, it suffices to instantiate Commit(x; r) deterministically
as H(x) for zero-knowledge to hold.

5.2.2.2 Final Zero Knowledge protocol. The Protocol 5 presents the final zero-
knowledge proof of knowledge for a solution to the regular syndrome decoding problem,
taking into account all the optimizations outlined above, except the use of deterministic
commitments (using deterministic commitments requires using the ROM, which is otherwise
not needed for the zero-knowledge proof. Looking ahead, this optimization is still used
when compiling the proof to a signature using Fiat-Shamir, since the ROM is used at this
stage anyway).
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5-round ZKPoK for RSD

Inputs: The prover and the verifier have a matrix H ∈ Fk×K
2 = [H ′|Ik] and a vector y ∈ Fk

2 .
The prover also knows a regular vector x̃ = (x|x2) ∈ FK

2 with Hamming weight HW(x̃) = w

and such that Hx̃ = y.
Parameters and notations.Let N denote the number of parties. Let x′ denote the vector
obtained by deleting the T -th bit in each block of x. The action of recomputing x from x′, i.e.
adding a T -th bit at the end of each length-(T − 1) block, computed as the opposite of the
XOR of all bits of the block, is referred to as "expanding."
Round 1 The prover emulates the preprocessing phase of Π as follows:

1. Chooses a random seed sd∗;

2. Uses sd∗ as the root of a depth-logN full binary tree to produce the leaves (sdi, σi)
using a length-doubling PRG for each i ∈ [N ];

3. Use (sd1, · · · , sdN−1) to create pseudorandom shares (x′1, · · · ,x′N−1) of x′, as well as
vectors (si, ti) ∈ F(T−1)·(K−k)/T

2 × ZK
T/2. Use sdN to create sn as well. Let xi denote

the vector obtained by “expanding” x′i to K − k bits;

4. Let s′i denote the value obtained by “expanding” si to a (K − k)-bit vector, and let
s′ ←

⊕n
i=1 s

′
i. Set s← (s′|H ′ · s′ ⊕ y). Define

auxN ←

(
x′ ⊕

N−1⊕
i=1

xi, s
′ −

N−1∑
i=1

ti mod T/2

)
;

5. Sets statei = sdi for 1 ≤ i ≤ N − 1 and stateN = sdN ||auxN ;

6. For each i ∈ [N ] computes comi := Commit(statei, σi);

7. Computes h := H(com1, · · · , comn) and sends it to the verifier.

Round 2 The verifier chooses a permutation π ∈ SK−k and sends it to the prover.
Round 3 The prover:

1. Simulates the online phase of the N parties protocol Π using the pairs (π(si), π(ti))
as the preprocessing material of the i-th party:

• for each i ∈ [N ] compute z′i = x′i ⊕ π(si) getting Jz1K2 = (z1, · · · , zN) by
“expanding” the z′i’s;

• Define z2 = H ′ · z1 ⊕ y and z = (z1|z2);

• Set Jx̄KT/2 = (x̄1, . . . , x̄N) where x̄i = z + (1− 2z)⊙ π(ti) mod T/2;

• For each i ∈ [N ] compute:

– w̄j
i = HW(x̄i

j) mod T/2 for all the blocks 1 ≤ j ≤ w;
– msgi = (zi, (w̄

j
i)1≤j≤w);
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2. Compute h′ = H(msg1, · · · ,msgn);

3. Send z1 and h′ to the verifier. // sending z′1 actually suffices

Round 4 The verifier chooses a challenge d ∈ [n] and sends it to the prover.
Round 5 The prover sends (statei, σi)i ̸=d and comd.
Verification The verifier checks that everything is correct:

1. Recompute ¯comj = Commit(statej , σj) for j ̸= d;

2. Recompute msgi for all i ̸= d using statei and z1;

3. Recompute

m̄sgd =

z1 −
∑
i ̸=d

zi,

1−
∑
i ̸=d

w̄j
i


1≤j≤w

 ;

4. Check if h = H( ¯com1, · · · , comd, · · · , ¯comN );

5. Check if h′ = H(msg1, · · · , m̄sgd, · · · ,msgN ).

Protocol 5: A five-round zero-knowledge proof of knowledge of a solution to the regular syndrome decoding problem

5.3 Efficiency and Performance Analysis

5.3.1 Communication
The expected communication of the zero-knowledge argument amounts to:

4λ+ τ ·
(
λ(logN + 1) +

(
2N − 1

N

)
T − 1

T
(K − k) +

(
N − 1

N

)
K log2 T

)
bits,

where hashes are assumed to be 2λ bits long, and commitments are λ bits long, and where
τ denotes the number of parallel repetitions of the proof.

5.3.2 Honest-Verifier Zero-Knowledge and Soundness
The completeness of the protocol naturally derives from its definition. In this section, the
honest-verifier zero-knowledge and soundness properties are proven.
5.3.2.1 Honest-Verifier Zero-Knowledge HVZK follows from semi-honest security
of the N -parties protocol Π. Given a simulator SimΠ for Π, it is possible to construct an
honest-verifier zero-knowledge simulator for the presented protocol as follows:

• Run SimΠ using the permutation π (which can be computed from the random coins
of the adversary V against Π) to simulate the views of parties Pi ̸=d to obtain statei ̸=d
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and z. From these informations the simulator computes all the message msgi, and so
h′ = H(msg1, · · · ,msgN), as an honest prover would;

• For all i ̸= d chooses uniform σi and computes comi = Commit(statei, σi) as an
honest prover would. Moreover, computes comd as a commitment to a 0-string. Hence
the simulator can compute h = H(com1, · · · , comN);

• The simulator outputs h, h′, z and (statei, σi)i ̸=d, msgd.

A straightforward hybrid argument shows that transcripts output by the simulator are
computationally indistinguishable from transcripts of real executions of the protocol with
an honest verifier.

5.3.2.2 Soundness

Theorem 5.3.1. Let Commit be a non-interactive commitment scheme, and H be a collision-

resistant hash function. Let p be a combinatorial bound (5.3.3) for the Protocol 5. Then the

protocol is a gap honest-verifier zero-knowledge argument of knowledge for the relation R
such that ((H, y), x) ∈ R if H · x = y mod 2 and x is a regular vector of weight w. The

gap relationR′ is such that ((H, y), x) ∈ R′ if H · x = y mod 2 and x is an f -weakly valid

witness. The soundness error of the proof is at most ε = p+ 1/n− p/n.

Proof. Let P̃ be a prover that manages to generate an accepting proof with probability ε̃ > ε.
It exists an extractor which finds a witness x such that H · x = y, where x is guaranteed to
be a weakly valid witness (see Definition 5.3.2). Let R denote the randomness used by P̃

to generate the commitment h of the first round, and by r a possible realization of R. Let
SuccP̃ denote the event that P̃ succeeds in convincing V. By hypothesis

Pr[SuccP̃] = ε̃ > ε = p+
1

N
− p

N
.

Since the goal is to show that having several accepted transcripts available it is always
possible to reconstruct a correct witness, then it is necessary to compute the probability
that the malicious prover P̃ succeeds in convincing the verifier V more than once. As the
first round of the protocol is fixed, the events are not independent, so a different argument
from the splitting lemma is required to calculate this probability.
Let fix an arbitrary value α ∈ {0, 1} such that (1− α)ε̃ > ε, which exists since ε̃ > ε. Let’s
say that a realization r of the prover randomness for the first flow is good if it holds that

Pr[SuccP̃|R = r] ≥ (1− α)ε̃.

Furthermore, by the Splitting Lemma (see e.g. [FJR22]), Pr[R good|SuccP̃] ≥ α. Assume
now that T0 is the transcript of a successful execution of the zero-knowledge proof with P̃.
Let r denote the random coin used by P̃ in the first round, and let d0 denote the fourth-round

66



Post-Quantum Signatures from RSD

5

message of the verifier. If r is good, then

Pr[SuccP̃|R = r] ≥ (1− α)ε̃ > ε >
1

N
,

which implies that there necessarily exists a second successful transcript T1 with a different
fourth-round message d1 ̸= d0. As it will be demonstrated afterward, given (T0, T1), it is
possible to extract a unique well-defined triplet (x, s, t) (where x is a candidate witness, and
(s, t) is the preprocessing material used by P̃) consistent with both transcripts.

Consistency of (T0, T1). Let (π0, d0) and (π1, d1) be the verifier challenges in the success-
ful transcripts T0 and T1 respectively, with d0 ̸= d1. Let us denote (state′i ̸=d0

, σ′i ̸=d0
, comd0)

and (statei ̸=d1 , σi ̸=d1 , comd1) the rest of the transcripts T0 and T1 respectively. Suppose that
∃i ∈ [N ] \ {d0, d1} such that (statei, σi) ̸= (state′i, σ

′
i). Then there are two possibilities:

• The committed values are different:

comi = Commit(statei, σi) ̸= Commit(state′i, σ
′
i) = com′i.

But since both transcripts from such states are supposed to be accepted, this implies
that in particular h = H(com1, · · · , comN) and h = H(com′1, · · · , com′N) which
contradicts the collision resistance of H .

• The committed values are equal:

comi = Commit(statei, σi) = Commit(state′i, σ
′
i) = com′i.

This directly contradicts the binding property of Commit.

Therefore, the states and the randomness are necessarily mutually consistent (that is
state′i ̸=d0,d1

= statei ̸=d0,d1 and σ′i ̸=d0,d1
= σi ̸=d0,d1). Since d0 ̸= d1, they jointly define a

unique tuple (statei, σi)i∈[N ], from which it is possible to recompute JxK2 = (x1, . . . ,xN)

and JsK2 = (s1, . . . , sn) , JtKp = (t1, . . . , tn).

The witness x is a valid witness. In this section is showed that if x is a strongly invalid
witness, then Pr[SuccP̃|R = r] ≤ ε, contradicting the assumption that r is good. Let denote
BadPerm the event (defined over the random choice of a permutation π, and for the fixed
value of (x, s, t)) that in each block of x′, the entries of the blocks sum to 1 modulo T/2

(that is, the event Succ(x′)), where x′ = π(t) + (x⊕ π(s))⊙ (1− 2π(t)). By construction,
the extraction procedure guarantees that the extracted candidate witness x has blocks of
odd Hamming weight. Therefore, by definition of the combinatorial bound (Definition 5.3.3),
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it holds that Pr[BadPerm] ≤ p. Now,

Pr[SuccP̃|R = r] = Pr[SuccP̃ ∧ BadPerm|R = r] + Pr[SuccP̃ ∧ ¬BadPerm|R = r]

≤ p+ (1− p) · Pr[SuccP̃|R = r ∧ ¬BadPerm].

Assume for the sake of contradiction that Pr[SuccP̃|R = r ∧ ¬BadPerm] > 1/n. As before,
this implies that given a successful transcript T ′0 with fourth round d′0, there necessarily
exists a second successful transcript T ′1 with the same first three rounds, and a fourth round
d′1 ̸= d′0.
By the same argument as above, T ′0 and T ′1 are necessarily consistent, and uniquely define a
tuple (state′i, σ′i)i∈[N ]. Furthermore, since R = r, meaning that the first flow h′ is the same
as the first flow h in T0, T1, it must holds that (state′i, σ′i)i∈[N ] = (statei, σi)i∈[N ], the states
and random coins uniquely defined by (T0, T1) (if this is not the case, either a contradiction
to the collision-resistance of H or the binding of Commit is obtained, as already shown).
Now, given T ′0, reconstruct the messages: msgi = (zi, (w̄

j
i)j≤w) is computed as zi ←

xi ⊕ π(si) and w̄j
i = ⟨1, x̄i

j⟩. In these equations, xi, si are stretched from sdi, and x̄i is
computed as z + (1 − 2z) ⊙ π(ti), with z = (z1|H ′z1 ⊕ y) and ti stretched from sdi (or
computed from auxn if i = n). Define zd′0 ← z1 −

∑
i ̸=d′0

zi and w̄j
d′
0
← 1−

∑
i ̸=d′0

w̄j
i for

j = 1 to w. The remaining tuple, m̄sgd′0 , is computed as (zd′0 , (w̄
j
d′
0
)j≤w).

Because T ′0 and T ′1 are consistent, all messages msgi for i /∈ {d′0, d′1} reconstructed from T ′1
must be identical to those reconstructed from T ′0. However, the value m̄sgd′0 is necessarily
distinct from the value msgd′0 reconstructed from T ′1. Indeed, if this was not the case, since
w̄j

d′
0
= 1−

∑
i ̸=d′0

w̄j
i , this would imply that the values w̄j

i)i≤n form additive shares of 1 for
j = 1 to w, implying that the value x̄ =

⊕
i x̄i has blocks of Hamming weights all equal to 1

modulo T/2. But since x̄ = π(t) + (x⊕ π(s))⊙ (1− 2π(t)) where (x, s, t) are constructed
from (state′i, σ

′
i)i∈[N ] = (statei, σi)i∈[N ], this implies that there would be a contradiction to

¬BadPerm.
Hence, it must be msgd′0 ̸= m̄sgd′0 . But since T

′
0, T

′
1 have the same first three rounds, and in

particular the same hash

h′ = H(msg1, · · · , m̄sgd′0 , · · · ,msgn) = H(msg1, · · · ,msgd′0 , · · · , m̄sgd′1 , · · · ,msgn)

, a contradiction to the collision-resistance of H has been reached. Hence, assuming the
collision-resistance of H , it necessarily holds that Pr[SuccP̃|R = r ∧ ¬BadPerm] ≤ 1/n.
Finishing the proof:

Pr[SuccP̃|R = r] ≤ p+ (1− p) · Pr[SuccP̃|R = r ∧ ¬BadPerm]

≤ p+ (1− p) · 1
n
= ε,
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contradicting the assumption that r is good. Therefore, x cannot be a strongly invalid
witness.

The extractor. Equipped with the above analysis, an extractor E , which is given rewind-
able black-box access to a prover P̃, is defined. Let N ← ln(2)/((1− α)ε̃− ε). E works as
follows:

• Run P̃ and simulate a honest verifier V to get a transcript T0. Restart until T0 is a
successful transcript.

• Do N times:

– Run P̃ with a honest V and the same randomness as in T0 to get a transcript T1.

– If T1 is a successful transcript with d0 ̸= d1, extract the tuple (x, s, t). If x is a
weakly valid witness, output x.

The end of the proof is perfectly identical to the analysis in [FJR22, Appendix F]: given that
E found a first successful transcript T0, then

Pr[SuccT1

P̃
∧ d1 ̸= d0|R good] = Pr[SuccT1

P̃
|R good]− Pr[SuccT1

P̃
∧ d1 = d0|R good]

≥ (1− α)ε̃− 1/n ≥ (1− α)ε̃− ε,

hence by definition of N , E gets a second successful transcript with probability at least
1/2. From there, the analysis of the expected number of calls E[call] of E to P̃ is identical
to [FJR22, Appendix F] (indeed, the defined extractor is identical, and the zero-knowledge
proof has a similar structure):

E[call] ≤ 1 + (1− Pr[SuccP̃]) · E[call] + Pr[SuccP̃] · (N + (1− α/2) · E[call])

=⇒ E[call] ≤
2

αε̃
·
(
1 + ε̃ · ln(2)

(1− α)ε̃− ε

)
,

which gives an expected number of calls poly(λ)(λ, (ε̃− ε)−1) by setting α← (1− ε/ε̃)/2

(corresponding to (1− α)ε̃ = (ε+ ε̃)/2). This concludes the proof.

5.3.3 Combinatorial Analysis
The discussion so far hinged upon the assumption that when the preprocessing material
is randomly shuffled by the verifier, a cheating prover has a very low success probability.
More specifically, as shown in Theorem 5.3.1, the soundness error of the new proof system
depends on a combinatorial bound p, which bounds the probability that a cheating prover
with an incorrect witness x finds preprocessing material (s, t) such that the verifier test
with x, π(s), π(t) passes, over the choice of the random permutation π.
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Definition 5.3.1 (informal). A real p ∈ (0, 1) is a combinatorial bound for the template

zero-knowledge proof if for every incorrect witness x, and every pair (s, t), the probability, over

the random choice of a permutation π, that x satisfies the following equations:

• x′ = z⊙ (1− π(t)) + (1− z)⊙ π(t) with z = π(s)⊕ x

• H · x = y mod 2, L · x = v mod 2, and L · x′ = v mod T/2

is upper-bounded by p.

Note that the last two equations stem from the use of the gcd trick, where the "mod 2 part"
of the equation L · x = v mod T is verified directly on the original shares of x modulo
2, and the remaining equation is checked modulo T/2 (assuming that gcd(2, T/2) = 1).
Proving a tight combinatorial bound turns out to be a highly non-trivial task. However, this
section provides an explicit formula for computing a tight combinatorial bound p in the
setting where T = K/w = 6 (corresponding to ZT/2 being the smallest ring whose order is
coprime with 2; this is the choice that minimizes the communication of the proof). In this
setting, a valid witness is a concatenation of w blocks of length 6, each block being a unit
vector.
To formally define the combinatorial bound, another definition is necessary.

Definition 5.3.2 (f -Strongly invalid candidate witness). A vector x ∈ FK
2 is called a f -

weakly valid witness if x is almost a regular vector (in the sense that it differs from a regular

vector in at most f blocks), or almost an antiregular vector. Formally, let (xj)j≤w be the w

length-K/w blocks of x. Assume thatK/w is even. Then x is an f -weakly valid witness if

1. ∀j ≤ w, HW(xj) = 1 mod 2, and

2. |{j : HW(xj) ̸= 1}| ≤ f or |{j : HW((1⊕ x)j) ̸= 1}| ≤ f ,

where 1⊕x is the vector obtained by flipping all bits of x. If x is not an f -weakly valid witness,

it is referred to as an f -strongly invalid candidate witness.

Below, set T ← K/w. For simplicity, assume that the parameters are such that w dividesK ,
and that T = 2 mod 4. Note that this ensures that a block xj of the candidate witness x has
Hamming weight 1 if and only if

∑K/w
i=1 xj

i = 1 mod T/2 and
∑K/w

i=1 xj
i = 1 mod 2.

Definition 5.3.3 (Combinatorial Bound). Given a vector u ∈ NK
divided into w length-

K/w blocks uj
, let Succ(u) denote the event that

∑K/w
i=1 uj

i = 1 mod T/2 for all j ≤ w.

A combinatorial bound for the zero-knowledge proof of 5 with parameters (K,w) is a real

p = p(K,w, f) ∈ (0, 1) such that for any f -strongly invalid candidate witness x ∈ FK
2

satisfying ∀j ≤ w, HW(xj) = 1 mod 2 ( i.e., x still satisfies condition 1 of Definition 5.3.2),

and for any pair of vectors (s, t) ∈ FK
2 × ZK

T/2,

Pr[π ←$ PermK , x
′ ← π(t) + (x⊕ π(s))⊙ (1− 2π(t)) : Succ(x′)] ≤ p(K,w, f),

where PermK denotes the set of all permutations of {1, · · · , K}.
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5.3.3.1 Overview - A balls-and-bins analysis.
A key difficulty in the analysis is the need to handle arbitrary choices of the strings (s, t)
chosen by the prover, as well as arbitrary (invalid) witnesses x. In the concrete instantiation,
the regular syndrome decoding problem is used, with T = K/w = 6 (a choice maximizing
efficiency). Therefore, the analysis focuses on this setting. In this case, assume an incorrect
witness x is given, represented as a concatenation of w length-T blocks x1, · · · , xw. The
equation L · x = v mod 2 translates to the condition that each block xj has odd Hamming
weight; since T = 6, HW(xj) ∈ {1, 3, 5} for j = 1 to w.
Now fix a position i ≤ K . The pair (sπ(i), tπ(i)) ∈ F2× F3 "transforms" xi into x′i as follows:
x′i = (xi ⊕ sπ(i)) · (1− 2tπ(i)) + tπ(i). The six elements of F2 × F3 fall into three categories
based on their effect on xi:

• (Identity) x′i = xi. This occurs when sπ(i) = tπ(i).

• (Flip) x′i = 1⊕ xi. This occurs when tπ(i) ∈ {0, 1} and sπ(i) ̸= tπ(i).

• (Constant 2) x′i = 2. This occurs when tπ(i) = 2.

Thus, the prover’s choice of (s, t) effectively selects a sequence of (copy, flip, const2) op-
erators, which are then randomly shuffled and applied to each bit of the witness x. This
can be modeled as a balls-into-bins experiment: the witness x is viewed as a sequence of
K bins, where the i-th bin is labeled by xi. The prover selects K balls, each representing
an operator (type-A for copy, type-B for flip, and type-C for const2). The balls are then
randomly assigned to bins, and the label of each bin is modified according to the operator
applied. The prover succeeds if the sum of the labels in each block of bins is 1 modulo 3
(ensuring each block of x′ has Hamming weight 1 modulo 3).
The analysis distinguishes two cases based on the balls chosen by the prover: either at least
60% of the balls are of the same type (this type is said to dominate the balls, with the 60%
threshold being somewhat arbitrary), or the types are well-spread (no type appears more
than 60% of the time). Intuitively, these cases correspond to two different "failure modes":

• Dominant Scenario. In this case, the best choice for the prover is to select x "very
close" to a valid witness (for example, with a single incorrect block) and set almost all
balls as type-A balls (type-A being what an honest prover would select). A few type-B
balls are then introduced, with the hope that the permutation places the type-B balls
exactly within the incorrect blocks of x, thereby correcting them. Alternatively, x
can be chosen to be close to an "anti-valid" witness (i.e. a valid witness with all its
bits flipped), and almost all balls are set as type-B balls to achieve the same effect.
Bounding this scenario involves calculating the probability that the incorrect blocks
of x receive balls of the dominant types.

• Well-Spread Scenario. In the well-spread scenario, each bin receives a ball chosen
randomly from the initial set of balls. Since the distribution is well-spread, the label
of each bin is mapped to an element of {0, 1, 2} with a well-distributed probability
mass over the options. To succeed, sufficiently many of the labels must be correctly
set (ensuring all blocks have labels summing to 1 mod 3). If the random variables
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corresponding to the labels were independent, a Chernoff bound would demonstrate
that this occurs with very low probability. Although the labels are not entirely
independent, the problem reduces to bounding a hypergeometric distribution, for
which strong Chernoff-style bounds are available (see Lemma 5.3.2).

To bound the dominant scenario, a (slightly involved) counting argument is used, enumer-
ating the total number of winning configurations for the prover for each choice of (1) the
number of incorrect blocks in x (denoted ℓ), and (2) the number of balls of the dominant
type (denoted θ), and dividing this by the total number of configurations. For each choice
of (ℓ, θ), this results in an explicit (albeit complex) formula for the bound. It is conjectured
that the optimal choice of ℓ, θ is to set ℓ = 1 and θ = K − 1 (i.e., using a witness with a
single incorrect block). Although no proof of this statement is provided, the bound can still
be computed explicitly by minimizing the formula over all possible choices of ℓ and θ. For
concrete parameters, a Python script1 is used to compute the bound explicitly. The output
of the script confirmed the conjecture for all parameters tested.
In contrast, in the well-spread scenario, the analysis bounds p using a Chernoff-style bound
for hypergeometric distribution, which directly provides an explicit and simple formula for
computing p in this case. Due to the exponential decay of the bound, it is observed that the
well-spread scenario is never advantageous for a malicious prover: the optimal strategy is
always to set (s, t) to fall within the dominant scenario.

5.3.3.2 A Formula for Estimating p

An adversary using an f -strongly invalid witness, as defined in Definition 5.3.2, is considered.
The adversary may choose preprocessing material (JsK2, JtK3) (i.e., s may differ from t). The
verifier selects and sends a uniformly random permutation π : [K] 7→ [K]. After opening
z = x⊕ π(s), Jx′K3 is computed as Jπ(t) + z − 2z ⊙ π(t)K3. The following lemma provides
an explicit formula for estimating p:

Lemma 5.3.1. Assume x is an f -strongly invalid witness satisfying ∀j ≤ w, HW(xj) =

1 mod 2. Then:

p ≤ 1−min

 min
0.6K≤θ<K
f<ℓ<K/6−f

(
F (j,K, ℓ, θ)(

K
θ

) )
; 1− 0.96K/(2K) ; (1− e−0.2·K/6) ·

(
1− 1(

K/6
K/60

))
 ,

where

F (j,K, ℓ, θ) :=

K/6∑
j=1

(−1)j+1 ·
j∑

i=0

6i ·
(
ℓ

i

)
·
(
K/6− ℓ

j − i

)
·
(

K − 6 · j
θ − 6 · j + i

)
.

n the formula above, the first term of min corresponds to the case where the preprocessing
material (s, t) ismostly honest (i.e. si = ti for most positions) ormostly dishonest (i.e. si ̸= ti

1https://github.com/ElianaCarozza/Short-Signatures-from-Regular-Syndrome-Decoding-in-the-
Head/blob/main/script.py
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for most positions), while the second term corresponds to the case where (s, t) is well spread
(having many positions with si ̸= ti and many with si = ti).
In the latter case, passing the verifier test requires a high degree of luck with the permutation
π: since the honest and dishonest positions in (s, t) are randomly shuffled, they are highly
likely to misalign with the invalid witness x. This intuition is formalized by showing that the
success event in this case is dominated by an event following a hypergeometric distribution,
and standard concentration bounds for hypergeometric distributions are applied.
The former case is more complex. Here, the success probability is bounded for every
fixed number ℓ of incorrect blocks in the witness x (i.e., blocks whose Hamming weight
is not 1), using counting arguments and the inclusion-exclusion principle. The bound
is then minimized over all possible choices of ℓ, excluding only the cases ℓ ≤ f and
ℓ ≥ K/6−f , as these correspond to the witness x being an f -weakly valid witness, according
to Definition 5.3.2.
It is worth noting that the same analysis provides a bound on the probability of using any
witness other than a strictly regular or strictly antiregular vector. However, this bound is
insufficient for the intended purpose. Intuitively, a cheating prover can adopt the following
strategy: use a witness x that is valid everywhere except on a single block, and select (s, t)
to be honest preprocessing material except at a single position i∗. By appropriately setting
the value at the incorrect position, the cheating prover passes the verifier test whenever the
permutation π aligns i∗ with the faulty block of x. This event occurs with probability 6/K .
For typical parameter choices, this quantity falls within the range [250, 350], leading to a
failure bound p in the range of 1/300. This is too high for the intended purpose, as the goal
is to achieve small signatures, which requires designing a "one-shot" zero-knowledge proof
with low soundness error.

A conjecture. It is conjectured that this naive strategy is the best possible. That is, if the
cheating prover holds an f -strongly invalid witness, the best they can do is

1. use a witness with exactly two incorrect blocks,

2. choose (s, t) to be an honest preprocessing material except on two positions (i0, i1).

Then, the prover wins if and only if the permutation aligns exactly i0, i1 each with one of
the two incorrect blocks. In this case, the winning probability of the prover is bounded by(
w
2

)−1. This conjecture is stated below:

Conjecture 5.3.1. If x is an f -strongly invalid witness satisfying ∀j ≤ w, HW(xj) =

1 mod 2, then

p ≤
(
w

f

)−1
.

There is no proof of this conjecture. Nevertheless, for any concrete choice of the parameter
K , it is not too hard to compute the concrete bound: a small Python program 2 can be run
to explicitly compute the formula of Lemma 5.3.1. When this is done, it is observed that the

2https://github.com/ElianaCarozza/Short-Signatures-from-Regular-Syndrome-Decoding-in-the-
Head/blob/main/script.py
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bound obtained is very close to the bound of the conjecture. For example, computing the
formula with f = 2 andK = 1284 yields a value of p approximately equal to 1/22880, only
slightly looser than the bound of 1/22898 predicted by the conjecture. Note that naively
computing the double sum of products of binomials for all values of ℓ in [f +1, K/6−f −1]
would yield very slow runtimes (a few days over a laptop for values of K in the thousands).
However, carefully storing some of the binomials and reusing them when appropriate makes
the computation significantly faster. Below, the proof of Lemma 5.3.1 is provided.

Notations. In the following, let Fail denote the event, defined over the random sampling of
π, that x′ does not pass the verifier check; i.e., that Succ(x′) = 0. In other words, the event
Fail is raised if there is i ∈ [1, K/6] such that

∑6i
j=6i−5 x

′
j ̸= 1 mod 3. Useful notations are

introduced to discuss the type of preprocessing material (s, t) that a cheating prover can
use. Observe that a pair (si, ti) ∈ F2 × F3 can take six possible values. These pairs are
categorized into three types:

Type A. (si, ti) ∈ {(0, 0), (1, 1)}, which are referred to as the copy type,

Type B. (si, ti) ∈ {(0, 1), (1, 0)}, which are referred to as the flip type,

Type C. (si, ti) ∈ {(0, 2), (1, 2)}, which are referred to as the const2 type.

The names copy, flip, const2 are explained. It is helpful to understand these categories by
viewing a pair (si, ti) as the following operator which transforms a bit u ∈ F2 into u′ ∈ F3:

fsi,ti : u→ ti + (u⊕ si)− 2 · (u⊕ si) · ti mod 3.

It is easy to check that the six possible pairs (si, ti) correspond only to three possible distinct
operators. A type-A pair corresponds to the copy operator, which transforms u ∈ F2 into
u ∈ F3. A type-B pair corresponds to the flip operator, which transforms u ∈ F2 into
1− u ∈ F3. Eventually, a type-C pair corresponds to the const2 operator, which maps any
u ∈ F2 to the constant 2 ∈ F3.
The analysis distinguishes two complementary scenarios for the vectors (s, t) (whose shares
form the preprocessing material): either a type is dominant among the vector components
(i.e., a significant proportion of all pairs (si, ti) are of the same type), or the types are well-
spread. The cutoff between these two scenarios does not matter much, but for the sake of
concreteness, (s, t) is in the dominant scenario if there is a type (either A, B, or C) such that
more than 60% of all pairs (si, ti) are of this type, and (s, t) is in the well-spread scenario
otherwise. Each scenario is analyzed separately.

Concentration inequality. A variant of the Chernoff inequality for hypergeometric
distributions 3 is used:

3Let X be a random hypergeometric variable, with the population size= N , number of successes in the
population= K , and the number of samples drawn without replacement= n. The expected value of X is µ =

E[X] = n · KN . For any δ > 0, Pr[X ≥ (1+δ)µ] ≤ exp
(
− δ2µ

2(1+δ/3)

)
and Pr[X ≤ (1−δ)µ] ≤ exp

(
− δ2µ

2

)
.
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Lemma 5.3.2. Suppose there is an urn with N balls, P of which are black. A random sample

of n balls is drawn from the urn without replacement. Let H(N,P, n) denote the number of

black balls in the sample, and let q ← P/N . Then for any t ∈ [0, 1− q],

Pr[H(N,P, n) ≥ (q + t) · n] ≤ exp (−n ·DKL(q + t||q)) ,

where DKL(u||v) = u · ln(u/v) + (1− u) · ln((1− u)/(1− v)) denotes the Kullback-Leibler

divergence (or relative entropy).

5.3.3.3 The Dominant Scenario It is assumed in this section that more than 60% of all
pairs (si, ti) are of the same type.

Case 1: type A is dominant. First, assume that the dominant type is A: at least 60% of all
pairs are of the copy type. Let θ ≥ 0.6 ·K denote the number of type-A pairs in (JsK, JtK3),
i.e., the number of coordinates i ∈ [K] such that si = ti.

Lemma 5.3.3. Assume that x is a strongly invalid witness satisfying ∀j ≤ w, HW(xj) =

1 mod 2, and that the number of type-A pairs in (s, t) is θ ≥ 0.6K . It holds that

Pr
π
[Fail] ≥

minf<ℓ<K/6−f

(∑K/6
j=1 (−1)j+1 ·

∑j
i=0 6

i ·
(
ℓ
i

)
·
(
K/6−ℓ
j−i

)
·
(

K−6·j
θ−6·j+i

))(
K
θ

) .

To prove Lemma 5.3.3, some useful notations are introduced. Recall that x is divided into
K/6 blocks xj of length 6 (with j ≤ K/6), where xj = (x6j−5, · · · , x6j). Because of the
condition that x satisfies ∀j ≤ w, HW(xj) = 1 mod 2 (which is guaranteed by construction
in the proof), each xj has Hamming weight either 1, 3, or 5. For every block xj , xj is referred
to as a honest block if HW(xj) = 1, and as a dishonest block otherwise (observe that if all the
xj are honest blocks, then x is a valid witness).

Proof. To bound the probability of the event Fail, it is reformulated as a balls-and-bins
game. Each bin corresponds to an entry of the vector x, and each ball to a pair (si, ti)
from the preprocessing material. For the proof of Lemma 5.3.3, two main types of balls
are distinguished: type-A balls and non-type-A balls. The experiment then becomes: K
balls are randomly thrown into K bins, where θ balls are type-A balls, and K − θ balls are
non-type-A balls. The value of θ is adversarially chosen but satisfies θ ≥ 0.6 ·K , and each
ball ends up in exactly one bin. Each bin i is labeled with the corresponding bit xi of x. The
bins are divided into K/6 blocks B1, · · · , BK/6 of six bins. When a ball falls into a bin i, it
changes its label xi into a new label x′i according to the operator: the label remains the same
for type-A balls (copy type), it is “flipped” for type-B balls (flip type), and it is replaced by 2

for type-C balls (const2 type).
A block of bins Bj is called honest if its bins are labeled with an honest block xj of the
witness x; otherwise, it is a dishonest block of bins. Let ℓ denote the number of honest blocks
of bins. For simplicity, it is assumed that the honest blocks are B1 to Bℓ, and the remaining

75



Chapter 5 Post-Quantum Signatures from RSD

5

blocks are the dishonest blocks; this assumption is made without loss of generality.
The following events Ej = E

(ℓ)
j are defined for j = 1 to K/6 (the superscript ℓ is omitted

for readability): for j = 1 to ℓ, Ej is the event that exactly five type-A balls end up in the
block Bj , and for j = ℓ+ 1 to K/6, Ej is the event that exactly six type-A balls end up in
the block Bj . The rationale behind the choice of the Ej is as follows:

• if any Ej happens, then the event Fail is triggered,

• when the proportion of type-A balls is large, it is likely that one such event occurs.

Claim 5.3.1.

Pr[Fail] ≥ Pr

K/6⋃
j=1

Ej

 .

Proof. It is shown that ∪K/6
j=1Ej ⊂ Fail. Fix any j ≤ K/6. Assume first that j ≤ ℓ, then Ej is

the event that exactly five type-A balls fell into Bj . As Bj is an honest block, it has five bins
labeled with 0, and one bin labeled with 1. There are two possibilities:

• Either the five type-A balls fell in the five 0-labeled bins. Then, the labels of these five
bins remain 0, and the label of the remaining 1-labeled bin is either flipped to 0 (if
the remaining ball is a type-B ball) or set to 2 (if the remaining ball is a type-C ball).
Therefore, the Hamming weight of the new labels HW(x′j) is either 0 or 2: in both
cases, it is not equal to 1 modulo 3, hence it fails the verifier check.

• Otherwise, four 0-labeled bins and the 1-labeled bin have their label unchanged, and
the remaining 0-labeled bin is either set to 1 (type-B ball) or to 2 (type-C ball). In this
case, HW(x′j) ∈ {2, 3}, hence HW(x′j) ̸= 1 mod 3.

Hence, whenever Ej happens, the second verifier check fails, which proves that Ej ⊂ Fail

for j = 1 to ℓ. Assume now that j > ℓ: Ej is the event that exactly 6 type-A balls fell into
Bj , and Bj is a dishonest block (i.e., HW(xj) ∈ {3, 5}). Since the six type-A balls leave the
labels of all six bins unchanged, the Hamming weight of Bj’s labels remains 3 or 5, and
neither value is equal to 1 modulo 3, causing the second verifier check to fail again. This
proves that Ej ⊂ Fail for j = ℓ+ 1 to K as well, which concludes the claim.

It remains to bound Pr
[
∪K/6

j=1Ej

]
. This is done through standard combinatorial arguments:

the space of all possible configurations of the experiment is considered, without distinguish-
ing type-B and type-C balls (i.e., configurations are counted by only looking at whether each
bin contains a type-A or a non-type-A ball). There are exactly

(
K
θ

)
possible configurations;

the number of configurations where one of the events Ej happens is now counted. By the
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inclusion-exclusion principle:∣∣∣∣∣∣
K/6⋃
j=1

Ej

∣∣∣∣∣∣ =
K/6∑
j=1

(−1)j+1
∑

S⊂[1,K/6], |S|=j

∣∣∣∣∣⋂
k∈S

Ek

∣∣∣∣∣ .
To bound the terms | ∩k∈S Ek|, a distinction is made between the Ek with k ≤ ℓ and those
with k > ℓ. Fix an integer i ∈ [0, j]. Among all possible subsets S ⊂ [1, K/6] of size |S| = j,
there are exactly

(
ℓ
i

)
·
(
K/6−ℓ
j−i

)
subsets S such that |S ∩ [1, ℓ]| = i. Fix any such subset

S = {k1, · · · , ki, ki+1, · · · , kj}, and consider the set of configurations |Ek1 ∩ · · · ∩ Ekj |.
Picking a configuration in this set amounts to:

• filling all the (dishonest) blocks of bins Bki+1
· · ·Bkj with type-A balls (using 6(j − i)

type-A balls),

• choosing one bin in each (honest) block Bk1 · · ·Bki which does not receive a type-A
ball,

• filling all remaining bins in Bk1 · · ·Bki with type-A balls (using 5i type-A balls),

• choosing a configuration of the θ− 6(j − i)− 5i = θ− 6j + i remaining type-A balls
among the K − 6j remaining bins.

There are 6i ways to pick one bin in each of the i blocks Bk1 · · ·Bki , and
(

K−6j
θ−6j+i

)
ways to

pick a configuration of the remaining type-A balls among the remaining bins. Therefore,

|Ek1 ∩ · · · ∩ Ekj | = 6i ·
(

K − 6j

θ − 6j + i

)
.

Hence, by summing over all subsets S of size j with i elements below ℓ, for i = 0 to j, it
holds

∑
S⊂[1,K/6], |S|=j

∣∣∣∣∣⋂
k∈S

Ek

∣∣∣∣∣ =
j∑

i=0

(
ℓ

i

)
·
(
K/6− ℓ

j − i

)
· 6i ·

(
K − 6j

θ − 6j + i

)
,

and therefore∣∣∣∣∣∣
K/6⋃
j=1

Ej

∣∣∣∣∣∣ =
K/6∑
j=1

(−1)j+1

j∑
i=0

(
ℓ

i

)
·
(
K/6− ℓ

j − i

)
· 6i ·

(
K − 6j

θ − 6j + i

)
.

Now, by the previous claim, Pr[Fail] ≥ Pr[∪K/6
j=1Ej] = | ∪K/6

j=1 Ej|/
(
K
θ

)
. Since the number

ℓ of honest blocks of bins is chosen by the adversary, the failure probability is minimized
over all possible values of ℓ, excluding only the cases ℓ ≥ K/6 − f and ℓ ≤ f , since x is
assumed to be an f -strongly invalid witness (Definition 5.3.2). This concludes the proof of
Lemma 5.3.3.
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Case 2: type B is dominant. The case where at least 60% of all pairs are of the flip type
is now addressed. This case is handled immediately through a simple reduction to Case 1.
First, observe that by definition, a vector x is an f -strongly invalid witness if and only if
1⊕ x is: this follows from Definition 5.3.2, and from the fact that HW(xj) = HW((1⊕ x)j)
for any j since the block length is even. Now, fix any f -strongly invalid witness x. Observe
that the probability Prπ[Fail] remains identical if
(1) x is replaced by 1⊕ x (i.e., all the bits of x are flipped),

(2) all type B balls are replaced by type A balls and vice-versa (leaving all type C balls
untouched).

In other words, flipping all bits of x and exchanging the roles of the copy and flip operators
leaves the experiment unchanged (the behavior of const2 operators being unaffected by this
change). But this brings the analysis back to the setting where type A is dominant, with an
f -strongly invalid witness 1⊕ x, and the bound of Lemma 5.3.3 applies.
Case 3: type C is dominant. It remains to address the case where at least 60% of all pairs
are of the const2 type. As the fraction of type C balls approaches 1, it is easy to see that
Pr[Fail] approaches 1 as well, since whenever six type C balls fall into a block of six bins,
the event Fail is raised (as 6 · 2 = 0 ̸= 1 mod 3). Therefore, without loss of generality, it is
assumed that the fraction of type C balls is exactly 0.6. It is shown that in this case,

Pr
π
[Fail] ≥ 1− 0.96K

2K
.

To simplify the analysis, a different distribution is first considered where all bins receive a
type A, B, or C ball with the same respective probabilities. This setting is referred to as the
simplified setting and Fails,Wins denote the events that the adversary fails or wins in this
setting. Now, fix a block b of six bins, and let hw denote the Hamming weight of the labels
of the block. For i = 4, 5, 6, denote iC the event that exactly i type C balls fall into the
block, and let p denote the probability that a type A ball falls into a given bin, conditioned
on the event that this bin does not receive a type C ball (then 1− p is the probability that a
type B ball falls into the bin, under the same condition). Let Winsb denote the event that the
adversary wins for block b (i.e., after placing balls in the bins, the labels sum to 1 mod 3).
The probability that the adversary wins conditioned on iC balls falling into the block b is
bounded. First, Pr[Winsb | 6C] = 0 (since 6 · 2 ̸= 1 mod 3). Second,

Pr[Winsb | 5C] = (1− hw/6)p+ (1− p) · hw/6 = (1− hw/3) · p+ hw/6.

Above, 1− hw/6 is the probability that the non-type C bin is a 0-labeled bin: the adversary
wins either if a type A ball falls into a 0-labeled bin, or if a type B ball falls into a 1-labeled
bin (since 5 · 2 + 0 = 10 = 1 mod 3). Eventually,

Pr[Winsb | 4C] = (1−hw/6)(1−hw/5)·(1−p)2+hw(6−hw)·p(1−p)/15+hw(hw−1)·p2/30.

Above, (1 − hw/6)(1 − hw/5) · (1 − p)2 is the probability that the two non-type C balls
are type B balls and they both fall into 0-labeled bins, hw(6 − hw) · p(1 − p)/15 is the
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probability that the two non-type C balls are a type A and a type B ball and they fall into a
1-labeled and a 0-labeled bin respectively, and hw(hw− 1) · p2/30 is the probability that the
two non-type C balls are type A balls and they both fall into 1-labeled bins. Since 4 · 2+2 · 1
is the only way to get 1 mod 3 with 4 type C balls, this covers all winning events for the
adversary. Eventually,

Pr[Failsb] ≥ Pr[Failsb ∧ 4C] + Pr[Failsb ∧ 5C] + Pr[Failsb ∧ 6C]

= Pr[Failsb | 4C] · Pr[4C] + Pr[Failsb | 5C] · Pr[5C] + Pr[Failsb | 6C] · Pr[6C]

= Pr[Failsb | 4C] ·
(
6

4

)
· 0.64 · 0.42 + Pr[Failsb | 5C] · 6 · 0.65 · 0.4 + Pr[Failsb | 6C] · 0.66.

Therefore, for each possible value of the Hamming weight hw ∈ {0, · · · , 6} of the block
of bins, plugging the formulas for Pr[Failsb | iC] = 1− Pr[Winsb | iC] for i = 4, 5, 6 above
yields a degree-2 polynomial Qhw in p. Let (αhw, βhw, γhw) denote the coefficients of this
polynomial: Qhw(p) = αhw · p2 + βhw, ·p+ γhw. For each value of hw ∈ {0, · · · , 6}, Qhw(p)
is minimized for p ∈ [0, 1]:

• Q0(p) is minimized at p = 0, and Q0(0) = 729/3125,

• Q1(p) is minimized at p = 0, and Q0(0) = 4779/15625,

• Q2(p) is minimized at p = 0, and Q0(0) = 5589/15625,

• Q3(p) is minimized at p = 0 or 1, and Q0(0) = 5832/15625.

Eventually, Q4(p), Q5(p), and Q6(p) are minimized at p = 1, and the minima are the same
as Q2(p), Q1(p), and Q0(p) respectively (this stems from the fact that the roles of A balls
and B balls are symmetrical when 0-labeled bins are exchanged with 1-labeled bins, which
changes hw to 6− hw).
Overall, the global minimum over (hw, p) is reached at Q0(0) = Q6(1) = 729/3125. This
yields the following bound:

Pr[Failsb] ≥ 729/3125 = 0.23328.

Then, across all K/6 blocks of bins, the following bound is obtained:

Pr[Fails] ≥ 1− (1− 0.23328)K/6 ≤ 1− 0.77K/6 ≤ 0.96K .

Recall that this bound holds in the simplified setting where each bin is assigned a ball
whose type is independently sampled from {A,B,C} with probabilities pA = 0.4 · p, pB =
0.4·(1−p), and pC = 0.6 (that is, a Bernoulli-style distribution is used). Now, letKA, KB, KC

denote the random variables that count the number of bins with type A, B, and C balls
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respectively. Observe that

Pr[Wins] ≥ Pr[Wins ∧ (KA = 0.4pK ∧KC = 0.6K)]

= Pr[Wins | KA = 0.4pK,KC = 0.6K] · Pr[KA = 0.4pK ∧KC = 0.6K]

≥ Pr[Wins | KA = 0.4pK,KC = 0.6K] · Pr[KA = 0.4pK] · Pr[KC = 0.6K].

Furthermore, the probability Pr[Wins | KA = 0.4pK,KC = 0.6K] corresponds exactly to
the event that the adversary wins in the original setting, where a fixed pool of balls (with
0.4pK type A, 0.4(1 − p)K type B, and 0.6K type C balls) is randomly permuted and
placed into the bins. That is,

Pr[Wins | KA = 0.4pK,KC = 0.6K] = Pr[Wins],

Hence

Pr[Win] ≤ Pr[Wins]

Pr[KA = 0.4pK] · Pr[KC = 0.6K]
≤ 0.77K/6

Pr[KA = 0.4pK] · Pr[KC = 0.6K]
.

To finish the proof, it remains to lower bound Pr[KA = 0.4pK] and Pr[KC = 0.6K]. Since
KA and KC are both binomial random variables of respective means 0.4pK and 0.6K , this
can be done straightforwardly: letKX be any binomial random variable in {0, · · · , K} with
mean µ. Then

Pr[KX = µ] =

(
K

µ

)
· (µ/K)µ · (1− µ/K)K−µ

=

(
K

µ

)
· e−h(µ/K)·K ,

where h : x→ −x lnx− (1− x) ln(1− x) is the binary entropy function. Furthermore, by
a standard application of the Stirling inequality4,

Pr[KX = µ] =

(
K

µ

)
· e−h(µ/K)·K ≥

√
K

8µ(K − µ)
≥ 1√

2K
,

where the last inequality is obtained by setting µ = K/2, since it minimizes the expression.
Plugging this in the bound on Pr[Win], it follows that

Pr[Win] ≤ 0.96K

2K
,

which concludes the analysis of the dominant scenario.

5.3.3.4 TheWell-Spread Scenario The same balls-and-bins formalism as in the previous
section is used again. In this section, it is assumed that the preprocessing material (JsK2, JtK3)

4This formulation of Stirling’s inequality can be found for example in [Gal68].
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contains strictly less than 60% of pairs (si, ti) of the most represented type. It is shown that
if this is the case, no matter the witness x used by the prover, the event Fail is extremely
likely to happen. The core intuition is the following: fix any block B of six bins, and fix
any choice of type-A, type-B, and type-C balls for the first five bins. Let y denote the sum
modulo 3 of the new labels in these five bins. If the types of balls are sufficiently well-spread,
then the distribution of possible new labels for the leftover bin is also well-spread across
the set {0, 1, 2}. For example, in the most extreme case where the unused balls have an
equal proportion of each of the three types after a ball is randomly picked and thrown in the
leftover bin, the new label of the bin is uniformly random over {0, 1, 2}, independently of
its original label. Therefore, in the well-spread scenario, the new label of the leftover bin has
a noticeable probability of being distinct from 1− y mod 3, in which case a failure event is
raised.
The above intuition shows that each block is likely to cause a failure in this scenario. While
the events of a block causing a failure are not independent across different blocks, when the
total number of balls and bins is large enough, their mutual influence appears very limited,
and the event that at least one of the blocks causes a failure is expected to quickly become
overwhelming. Below, it is proven that this intuition is indeed correct.

Lemma 5.3.4. Assume that x is a strongly invalid witness satisfying ∀j ≤ w, HW(xj) =

1 mod 2. If the preprocessing material (JsK2, JtK3) contains strictly less than 60% of pairs

(si, ti) of the most represented type, it holds that

Pr
π
[Fail] ≥ (1− e−0.2·K/6) ·

(
1− 1/

(
K/6

K/60

))
.

Proof. Fix one bin in each block (the selected bins). Randomly throwing the balls into all
bins is equivalent to the following experiment: a uniformly random size-K/6 subset of all
balls (the selected balls) is first picked. The remaining balls are thrown randomly among the
remaining bins, and the selected balls randomly among the selected bins. The probability of
a failure event is bounded by proving two claims:

• with high probability, the three types of balls (A, B, and C) remain relativelywell-spread
among the randomly selected balls,

• when the selected balls are well-spread, a failure event is extremely likely to happen,
for any setting of the remaining balls into the remaining bins.

Claim 5.3.2. Let S be a uniformly random size-K/6 subset of [1, K]. Let p denote the

probability, over the random choice of S, that the set {(si, ti) : i ∈ S} contains more than

90% of pairs of any given type. Then

p < exp (−0.2 ·K/6) .

Proof. Let θ/K denote the proportion of the most frequent type among all pairs (si, ti); by
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assumption, θ/K < 0.6. The balls of the most frequent type are viewed as “black balls”
(in the case of ties, the exact choice does not matter). The claim follows by applying the
Chernoff inequality for the hypergeometric distribution given in Lemma 5.3.2, using q = 0.6

and t = 0.3.

Claim 5.3.3. Fix a set S of K/6 selected balls such that the set {(si, ti) : i ∈ S} does not
contain more than 90% of pairs of any given type. FixK/6 selected bins (one in each block).

Fix an arbitrary repartition of the remaining balls into the remaining bins. Then the probability,

taken over the random assignment of theK/6 selected balls to theK/6 selected bins, that no

failure event happens is bounded by

Pr[no failure] ≤ 1(
K/6
K/60

) .
Proof. Let 1/3 ≤ θ/K < 0.9 denote the proportion of the most common type among all
selected balls. “Black balls” refer to the balls of this type, and “white balls” to the remaining
balls. For any block, and any assignment of non-selected balls among the five non-selected
bins of this block, there is exactly one type of ball (among A, B, and C) such that assigning
this ball to the selected bin of the block does not lead to a failure: if y is the sum (modulo 3)
of the new labels in the non-selected bins, this is the type which changes the label of the
selected bin to 1− y mod 3. Imagine now that each selected bin is painted as follows: if the
type that does not cause a failure in this block is that of the black balls, it is colored in black;
otherwise, it is colored in white.
Two cases can occur: either the number of black balls among the selected balls is not equal to
the number of black selected bins. In this case, no assignment can put a ball of the right color
in all selected bins, and Pr[no failure] = 0. Otherwise, assume that exactly θ/6 selected bins
are black. To avoid a failure event, the θ/6 balls that end up in the θ/6 black selected bins
must be exactly all the black balls. There are

(
K/6
θ/6

)
ways to choose which balls will end up in

the black bins among the K/6 selected balls, and only one non-losing configuration, hence

Pr[no failure] ≤ 1(
K/6
θ/6

) .
From here, the claim follows using the fact that

(
K/6
θ/6

)
≥
(

K/6
0.9·K/6

)
=
(

K/6
0.1·K/6

)
since 0.1 <

θ/K < 0.9.

Equipped with the two claims, the proof of Lemma 5.3.4 follows almost immediately: fix
K/6 selected bins, one per block, and let S denote the indices of the balls that end up in
these bins. Define S as well-spread if no type represents more than 90% of the types of the
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balls in S. Then,

Pr[Fail] ≥ Pr[S is well-spread] · Pr[Fail | S is well-spread]

≥ (1− e−0.2K/6) ·

(
1− 1(

K/6
K/60

)) ,

which concludes the proof.

This concludes the proof of Lemma 5.3.1.

5.4 Signature Scheme Construction

In this section, the 5-round protocol described in Protocol 5 is turned into a signature scheme
using the Fiat-Shamir transform following the steps presented in the protocol 4.3.5.1. As
in previous works, a salt salt ∈ {0, 1}2λ is used to avoid 2λ/2-query attack resulting from
collisions between seeds. Taking into account the forgery attack presented by Kales and
Zaverucha [KZ20a] against the signature schemes obtained by applying the Fiat-Shamir
transform to 5-round protocols and adapting it to the actual working context yields a forgery
cost of

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+N τ2

}
(5.1)

5.4.1 Description of the Signature Scheme
For the signature scheme central to this chapter, the key generation algorithm randomly
samples a syndrome decoding instance (H, y) with solution x as described in Protocol 6.

Key generation algorithm

Inputs: A security parameter λ.

1. Randomly chooses a sd← {0, 1}λ;

2. Using a pseudorandom generator with sd to obtain a regular vector x ∈ FK
2 with

HW(x) = w and a matrix H ;

3. Compute y = Hx;

4. Set pk = (H, y) and sk = (H, y, x).

Protocol 6: Key generation algorithm

Given a secret key sk and a messagem, the signing algorithm is described in Protocol 7.
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Signing algorithm of the signature scheme

Inputs: A secret key sk = (H, y, x) and a message m ∈ {0, 1}∗.
Sample a random salt ∈ {0, 1}2λ.
Phase 1 For each iteration e ∈ [τ ]

1. Choose a random seed sde ← {0, 1}λ;

2. Use sde and salt as input of a pseudorandom generator to produce sdei for each i ∈ [N ];

3. Compute auxeN ;

4. Set stateei = sdei for 1 ≤ i ≤ N − 1 and stateeN = sdeN ||auxeN ;

5. Use all the states to create, through a pseudorandom generator:

• JxeK2 = (xe
1, . . . ,x

e
N );

• s = Jre1K2 = (se1, . . . , s
e
n);

• t = JreKq = (te1, . . . , t
e
n);

6. For each i ∈ [N ] computes come
i := H0(salt, i, state

e
i ).

Phase 2

1. Compute h1 = H1(m, salt, com1
1, · · · , com1

N , · · · , com1
τ , · · · , comτ

N );

2. Obtain πe
{e∈τ} ∈ SK−k via a pseudorandom generator using h1.

Phase 3 For each iteration e ∈ [τ ]

1. Each party Pi computes zei = xe
i ⊕ π(sei );

2. The parties get Jze1K2 = (ze1, · · · , zeN) and set Jze2K2 = H ′Jze1K2⊕y and so ze = (ze1|ze2);

3. Obtain Jx̄eKq = (x̄e
1, . . . , x̄

e
N) where x̄e

i = ze + (1− 2ze) ∗ π(tei );

4. For each j ∈ [N ] compute:

• w̄j,e
i = ⟨1, x̄i

j,e⟩ for all the blocks 1 ≤ j ≤ w;

• msgei =

(
zei ,
{
w̄j,e

i

}
1≤j≤w

)
.

Phase 4

1. Compute h2 = H2(m, salt, h1,msg11, · · · ,msg1n, · · · ,msgτ1 , · · · ,msgτn);

2. Obtain de{e∈τ} ∈ [N ] via a pseudorandom generator using h2.

Phase 5 Output the signature σ = salt|h1|h2|(stateei ̸=d|come
de){e∈τ}.

Protocol 7: Signing algorithm of the signature scheme
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Given a public key pk, a messagem and a signature σ, the verification algorithm is described
in Protocol 8.

Verification algorithm of the signature scheme

Inputs: A public key pk = (H, y), a messagem ∈ {0, 1}∗ and a signature σ.

1. Split the signature as follows

σ = salt|h1|h2|(stateei ̸=d|come
de){e∈τ};

2. Recompute πe
{e∈τ} ∈ SK−k via a pseudorandom generator using h1;

3. Recompute de{e∈τ} ∈ [N ] via a pseudorandom generator using h2;

4. For each iteration e ∈ [τ ]

• For each i ̸= d recompute ¯come
i = H0(salt, i, state

e
i );

• Use all the states, except stateede , to simulate the Phase 3 of the signing algorithm
for all parties but the de−th, obtaining msgei ̸=de ;

• Compute

¯msgede =

ze1 −
∑
i ̸=d

zei ,

1−
∑
i ̸=d

w̄j,e
i


1≤j≤w

 ;

5. Check if h1 = H1(m, salt, com1
1, · · · , com1

N , · · · , com1
τ , · · · , comτ

N );

6. Check if h2 = H2(m, salt, h1,msg11, · · · ,msg1n, · · · ,msgτ1 , · · · ,msgτn);

7. Output ACCEPT if both conditions are satisfied.

Protocol 8: Verification algorithm of the signature scheme

Theorem 5.4.1. Suppose the PRG used is (t, ϵPRG)-secure and any adversary running in time

t has at most an advantage ϵSD against the underlying d-split syndrome decoding problem.

Model the hash functions H0, H1, H2 as random oracles with an output of length 2λ-bit. Then

chosen-message adversary against the signature scheme 6, running in time t, making qs signing

queries, and making q0, q1, q2 queries, respectively, to the random oracles, succeeds in outputting

a valid forgery with probability

Pr[Forge] ≤ (q0 + τNs)
2

2 · 22λ
+
qs (qs + q0 + q1 + q2)

22λ
+qs ·τ ·ϵPRG+ϵSD+Pr[X+Y = τ ] (5.2)

where ϵ = p + 1
N
− p

N
, with p given by Lemma 5.3.1, X = maxα∈Q1{Xα} and Y =

maxβ∈Q2{Yβ} with Xα ∼ Binomial(τ, p) and Yβ ∼ Binomial
(
τ −X, 1

N

)
where Q1 and

Q2 are sets of all queries to oracles H1 and H2.
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The proof of Theorem 5.4.1 follows directly from the standard analysis of Fiat-Shamir-based
signatures from the 5-round identification protocol. It is identical to the proof of Theorem 5
in [FJR22], and it is omitted here.

5.4.2 Parameters Selection Process
This section focuses on the selection of the parameters for the zero-knowledge argument
system of Section 5.2.2 and the signature scheme of Section 5.4.1. Let f be the number of
faulty blocks (of Hamming weight 3 or 5) allowed in the witness extracted from a cheating
prover. Looking ahead, f is chosen as the smallest value that minimizes τ , the number of
repetitions of the underlying zero-knowledge argument, which has a strong impact on the
size of the signature. Given a candidate value f , the selection of the parameters (K, k, w)
proceeds as outlined below. The reader should remind that, to work over the smallest
possible field F3 in the zero-knowledge proof, the weight is forced to be w = K/6 to get a
blocksize 6. Also, the target bit-security is set to λ = 128.
Choosing k. As explained in Section 5.5.4, the dimension k is chosen such that even when
allowing f > 0 faulty blocks in the zero-knowledge proof, the assumption underlying
the unforgeability of the signature remains equivalent to the standard RSD assumption.
Concretely, this is achieved by setting k to

k ←

⌈
log2

(
f∑

i=0

6w−i ·
(
w

i

)
· 26i

)⌉
+ b · λ,

with b = 1. A second choice of parameters is additionally considered, in which the constant
b = 0 is used in the above equation. This second choice of parameters corresponds to
the f -almost-RSD uniqueness bound, the threshold where the number of almost-regular
solutions becomes close to 1. This setting should intuitively lead to the hardest instance
of the almost-RSD problem. However, it does not reduce anymore to the standard RSD
problem, since a random RSD instance might have irregular (but almost-regular) solutions.
ChoosingK. Having chosen k (as a function of w = K/6), it is necessary now to focus
on the other dimension K . Here, the use of the attacks described in Sections 5.5.2 and 5.5.3
allows to select the smallest K such that, when setting k as above, λ bits of security against
all attacks are achieved. Even if the approximate birthday paradox attack (Section 5.5.3) is
always the most efficient attack, by a significant margin, it relies upon the assumption that
approximate collisions can be found in linear time, and no such linear-time algorithm is
known as of today.
Computing p. Equippedwith a candidate instance (K, k, w) for a number f of faulty blocks,
the use of the formula of Lemma 5.3.1 allows to compute a bound p on the probability that
a malicious prover can use an incorrect witness (with at least f + 1 faulty blocks) in the
first part of the zero-knowledge proof. More precisely, since computing p exactly using the
Python code 5 takes a few hours of computation, the value of p is initially determined based

5https://github.com/ElianaCarozza/Short-Signatures-from-Regular-Syndrome-Decoding-in-the-
Head/blob/main/script.py
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on the prediction from Conjecture 5.3.1 (which aligns with all exact calculations tested using
the formula). Subsequently, after finalizing all parameter choices, the correctness of the final
bound p is verified by applying the explicit formula, ensuring the computation is performed
only once.

Computing τ . The number of repetitions τ for the zero-knowledge argument and the
signature scheme is computed. At this stage, the parameter selection varies depending on
the specific case:

Zero-knowledge argument. For the zero-knowledge argument, τ is computed as the
smallest value such that ετ ≤ 2−λ, where ε = 1/n+ p · (1− 1/n), n being the number
of parties. Here, there is no optimal choice of f . Instead, f is a tradeoff: choosing
f = 0 guarantees that the zero-knowledge argument achieves standard soundness
(with no gap) but makes ε higher. A larger f reduces p, hence ε, but introduces a gap
in soundness. In any case, as soon as p ≪ 1/n, it holds that ε ≈ 1/n. In practice,
using f = 1 already leads to p < 5 · 10−5, which is much smaller than any reasonable
value of 1/n (since increasing n to such values would blow up computation). Hence,
the only reasonable choices are f = 0 (for standard soundness) and f = 1 (for optimal
efficiency).

Signature scheme. The signature scheme is obtained by compiling the zero-knowledge
argument using Fiat-Shamir. Due to the compilation of a 5-round zero-knowledge
proof, the attack by Kales and Zaverucha [KZ20a] applies, necessitating the choice
of τ according to Equation 5.1. This significantly alters the optimal selection, as it
is no longer valid that any value of p ≪ 1/n automatically results in the smallest
possible τ . Instead, by the convexity of Equation 5.1, the smallest achievable τ is
τZK+1, where τZK represents the optimal value of τ for the zero-knowledge argument
(i.e. the smallest value satisfying ετZK ≤ 2−λ). The approach involves computing τ
using Equation 5.1 for a given candidate value of f . If τ > τZK + 1, the value of
f is incremented by 1, and the entire process is repeated, including selecting new
parametersK and k, recomputing p, and so forth. After a few iterations, the process
converges to the smallest number f of faulty blocks that minimizes the resulting value
of τ .

Choosing N . The selection of the number of parties N is addressed independently of the
other parameters. Increasing N always reduces communication costs by decreasing the
soundness error, but it also increases computation, which scales linearly with N . Following
the strategy outlined in Banquet [BDK+21], N is chosen as a power of two, aiming for
a signing time comparable to that of prior works (on a standard laptop) to ensure a fair
comparison. All parameters (K, k, w, f, τ) are then computed, and N is reduced to the
smallest value that maintains λ bits of security.

5.4.2.1 Runtime estimations. Eventually, it remains to estimate the runtime of the
signature and verification algorithms of the proposed signature scheme. Since a full-fledged
implementation of the signature scheme doesn’t exist, existing benchmarks are used to
conservatively estimate the runtime of the scheme. The following implementation choices
are considered:
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• The tree-based PRG is implemented with fixed-key AES 6. This is the standard and
most efficient way to implement such PRGs over machines with hardware support for
AES [01].

• The commitment scheme is implemented with fixed-key AES when committing to
short values (λ bits), and with SHAKE when committing to larger values.

• The hash function is instantiated with SHAKE.

For fixed-key AES operations, the estimated runtime using hardware instructions is 1.3
cycles/byte [MSY21]. For SHAKE, the runtime strongly depends on a machine. However,
according to the ECRYPT benchmarkings7, on one core of a modern laptop, the cost of
hashing long messages ranges from 5 to 8 cycles/byte (8 cycles/byte are used in the estima-
tions, to stay on the conservative side). The analysis also includes counting XOR operations
(where XORing two 64-bit machine words requires one cycle) and mod-3 operations. The
latter are more challenging to estimate without a concrete implementation. However, their
contribution to the overall cost is relatively small. Even a conservative estimation with up
to an order of magnitude overhead compared to XOR operations has minimal impact on
the overall runtime. An order of magnitude of overhead is assumed in the estimations to
remain conservative. When converting cycles to runtime, a 3.8 GHz processor is assumed,
consistent with the setup in previous work [FJR22], to facilitate a direct comparison with
their results, which are most relevant to this context.
Of course, the above estimations ignore additional costs such as allocating or copying
memory, and should therefore only be seen as a rough approximation of the timings
that an optimized implementation could get. For comparison, in the Banquet signature
scheme [BDK+21], another candidate post-quantum signature scheme based on the MPC-
in-the-head paradigm, 25% of the runtime of their optimized implementation was spent
on allocating and copying memory, and 75% on the actual (arithmetic and cryptographic)
operations.

5.4.2.2 Results. Two settings were considered: a conservative setting, where the un-
derlying assumption reduces to the standard RSD assumption, and an aggressive setting,
where the parameters rely on the conjectured hardness of the f -almost-RSD assumption.
All numbers are reported in Table 5.1. Depending on the chosen setting, the following
parameters were obtained:

Conservative setting (standard RSD). The optimal choice of the number f of faulty
blocks is f = 12. Given this f ,K is set to 1842, k to 1017, andw to 307. The target is 128 bits
of security against all known attacks, assuming conservatively that approximate birthday
collisions can be found in linear time to estimate the cost of the most efficient attack. In this
parameter range, the solution to the random RSD instance is the only 12-almost-regular

6A follow-up, discussed in the next chapter, explains that this instantiation was incorrect: as in other
works presenting signature candidates, the use of a seed was missing in the AES instantiation, despite being a
necessary condition to ensure security. The next chapter provides formal results to properly instantiate the
tree-based PRG with fixed-key AES and achieve full security.

7https://bench.cr.yp.to/results-hash.html
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solution except with probability 2−128; hence, 12-almost-RSD reduces to standard RSD. With
these parameters, three values of n were considered. Each time, n was first set to a power of
two, the optimal value of τ computed, and then n reduced to the smallest value that still
works for this value of τ .

• Setting 1 – fast signature (rsd-f): τ = 18, n = 193. In this setting, the signature size is
12.52 KB. The runtime estimated using the described methodology is 2.7ms.

• Setting 2 – medium signature 1 (rsd-m1): τ = 13, n = 1723. In this setting, the
signature size is 9.69 KB. The runtime estimated using the described methodology is
17ms.

• Setting 3 – medium signature 2 (rsd-m2): τ = 12, n = 3391. In this setting, the
signature size is 9.13 KB. The runtime estimated using the described methodology is
31ms.

• Setting 4 – short signature 2 (rsd-s): τ = 11, n = 7644. In this setting, the signature
size is 8.55 KB. The runtime estimated using the described methodology is 65ms.

Aggressive setting (f -almost-RSD). In this setting, k is set at the f -almost-RSD unique-
ness bound (the threshold above which the number of f -almost-regular solutions approaches
1). In this setting, there might be additional almost-regular solutions beyond the regular
solution x for a random RSD instance; hence, f -almost-RSD does not reduce directly to
the standard RSD assumption. This assumption is considered plausible but exotic, and its
potential impact on the parameters is investigated. The conservative parameters are viewed
as the main choice of parameters. The aggressive parameters yield noticeable improvements
in signature size and runtime, which could motivate further cryptanalysis of this exotic
variant. Four parameter settings are provided, comparable to the conservative settings,
using the optimal value f = 13 and the same numbers n of parties as above. In this setting,
K = 1530, k = 757, and w = 255.

5.5 Cryptanalysis of RSD

A careful reader might have noticed an apparent issue in the previous analysis: assume that
a cheating prover uses an antiregular witness x (i.e., a vector such that x ⊕ 1 is regular),
and only type-B balls (i.e. the pairs (si, ti) are such that si = 1 − ti). Then it passes the
verifier checks exactly as an honest prover would: the antiregular vector x still has blocks
of odd Hamming weight, and for any choice of π, x′ is now equal to 1⊕ x: that is, a regular
vector. Concretely, this means that the zero-knowledge proof is not a proof of knowledge
of a regular solution, but rather a proof of knowledge of either a regular or an antiregular

solution. Nevertheless, when building a signature scheme, this is not an issue: it simply
implies that unforgeability relies instead on the hardness of finding a regular or antiregular
solution to an RSD instance. But it is a folklore observation that this variant of RSD does
reduce to the standard RSD problem, with only a factor 2 loss in the success probability,
hence this does not harm security.
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This approach is pushed even further. The bound p obtained by the previous analysis is
essentially tight, but remains relatively high for the intended purpose. Concretely, fixing a
value ofK ≈ 1500 (this is roughly to the range of parameter choices), the result is p ≈ 1/250.
This bound is met when the prover uses a witness which is regular almost everywhere,
with at most one exceptional block, where it has Hamming weight 3 or 5 (or the antiregular
version of that). In this case, the prover builds (s, t) honestly, except on a single position
(si, ti), where si = 1− ti. Then, with probability 1/250, the permutation aligns i with the
unique faulty block (there are 250 blocks in total), and the (si, ti) pair “corrects” the faulty
block, passing the verifier checks. Even though a 1/250 bound is not too bad, in this context
it largely dominates the soundness error of the proof. This stems from the fact that the
protocol has extremely low computational costs, hence the number n of virtual parties can
be set much higher than in previous works, e.g., n = 1024 or n = 2048, while still achieving
comparable computational costs. In this high-n setting, the goal is to achieve a soundness
error close to the best possible value of 1/n, to minimize the number of parallel repetitions
(hence reducing communication).
To get around this limitation, almost-regular witnesses (or almost-antiregular witnesses)
are allowed. Concretely, the soundness of the zero-knowledge proof is relaxed to guarantee
only that a successful cheating prover must at least know an almost-regular (or almost-
antiregular) witness, i.e., a witness whose blocks all have weight 1 except one, which might
have weight 1, 3, or 5. This form of zero-knowledge proof with a gap between the language of
honest witnesses and the language of extracted witnesses is not uncommon in the literature.
In particular, it is similar in spirit to the notion of soundness slack in some lattice-based
zero-knowledge proofs, where a witness is a vector with small entries, and an extracted
witness can have much larger entries [CDX+16]. By using this relaxation, the bound p
improves by (essentially) a quadratic factor: a cheating prover must now cheat on (at least)
two positions (si, ti), and hope that both align with the (at least) two incorrect blocks of x.
Concretely, usingK ≈ 1500, the combinatorial analysis gives p ≈ 3 · 10−5 in this setting,
which becomes a vanishing component of the soundness error (dominated by the 1/n term).
When building a signature scheme from this relaxed zero-knowledge proof, the Fiat-Shamir
transform is applied to a 5-round protocol, and the number of repetitions is adjusted to
account for the attack of [KZ20a]. For a bound of p as above, this severely harms efficiency.
Following the strategy of [FJR22], the problem is avoided by making p much smaller. Con-
cretely, denoting τZK the smallest integer such that (1/n + p · (1 − 1/n))τZK ≤ 2−λ, the
optimal number of repetitions which can be hoped for in the signature scheme is τ = τZK+1.
Therefore, denoting f the number of faulty blocks in the witness, f is set to be the smallest
value such that the resulting bound p yields τ = τZK + 1, hence achieving the optimal
number of repetitions. At this stage, the unforgeability of the signature now reduces to the
hardness of finding either an almost-regular or an almost-antiregular solution to an RSD
problem (with up to f faulty blocks), which seems quite exotic (though it remains in itself a
plausible assumption). For the sake of relying only on the well-established RSD assumption,
parameters are set such that, except with 2−λ probability, a random RSD instance does
not in fact have any almost-regular or almost-antiregular solution (with up to f faulty
blocks) on top of the original solution. This implies that, for this choice of parameters, this
“f -almost-RSD” assumption is in fact equivalent to the RSD assumption (with essentially no
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loss in the reduction).
This section gives a fully detailed overview of the security of RSD, exploring also the relation
between the RSD problem and the almost-RSD one.
Specifically, a precise description is provided of how RSD relates to the standard syndrome
decoding assumption, depending on the parameters (K, k, w). Indeed, although this problem
has been used and analyzed in the past, the parameter setting adopted here differs from
previous works. Specifically:

• In the work of [AFS03], which introduced the assumption, and its follow-ups [FGS07;
MDC+11; BLP+11], the goal was to construct a collision-resistant hash function.
Consequently, the parameters were chosen such that the mapping x→ H ·x is highly
non-injective. In other words, in their parameter setting, an instance (H, y) always has
(usually exponentially) many solutions. This, in turn, enabled powerful generalized
birthday attacks (GBA), resulting in rather large parameters. In contrast, the setting
adopted here relies only on the one-wayness of x→ H · x and does not require the
mapping to be compressive.

• In the recent line of work on pseudorandom correlation generators [BCG+18;
BCG+19b; BCG+19a; BCG+20b; YWL+20; WYK+21; RS21; CRR21; BCG+22], the
regular syndrome decoding problem is typically used in a very specific setting: it
relies on the extremely low noise regime while allowing the dimensionK to be huge,
typically of the order of 220 to 230. This is the opposite of the setting adopted here,
where K strongly impacts efficiency (hence, the smaller K , the better), and a high
noise regime is used to reduce the block size, further increasing efficiency.

• The work of [HOS+18] also relies on the regular syndrome decoding problem, and
their parameter setting was found to be the closest to the one adopted here (though the
paper handles a relatively wide variety of parameter settings). A section of [HOS+18]
is devoted to the analysis of RSD, and this section served as a starting point. However,
a few mistakes and imprecisions were identified in that analysis.

Throughout this chapter, an "RSD uniqueness bound" is concretely defined, analogous to
the Gilbert-Varshamov (GV) bound for standard syndrome decoding, and it is shown that:

• above the GV bound, RSD is always easier than SD;

• below the RSD uniqueness bound, RSD becomes harder than SD;

• in the intermediate zone between the two bounds, the hardness of the two problems
is not directly comparable.

The chosen parameters fall within this gray zone and correspond to a setting where a random
RSD instance does not have additional f -almost-regular solutions with high probability,
ensuring a tight reduction to the standard RSD assumption even when such relaxed solutions
are allowed.
Existing attacks on RSD are also reviewed, and in most cases revisited and improved to
exploit the structure of the RSD problem more effectively, resulting in significant speedups.
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A new attack is ultimately designed, outperforming all previous attacks. This attack is
not fully explicit and relies on an approximate birthday paradox search (i.e., finding an
almost-collision between items of two lists). To remain conservative when choosing concrete
parameters, it is assumed that this approximate birthday paradox can be solved in time linear
to the list size. While it is unclear how such a fast approximate collision search might be
performed, it is not implausible that such an algorithm could exist, prompting the decision
to err on the side of caution. Identifying such an algorithm is considered an interesting open
problem.

5.5.1 Uniqueness Bound for Regular Syndrome Decoding

The Gilbert-Varshamov (GV) bound is defined as the largest dGV such that
∑dGV−1

i=0

(
K
i

)
≤ 2k.

The GV bound establishes a weight threshold for the injective setting of the syndrome
decoding problem when the constraint on the solution x is of the form HW(x) ≤ w.
Specifically, when w ≤ dGV, the pair (H, y = H · x) uniquely determines x with high
probability over the choice of a random sparse vector x. When additional structure is imposed
on the noise, the number of possible preimages is restricted, altering the threshold. For
instance, under an exact weight constraint HW(x) = w (the standard setting for syndrome
decoding), the uniqueness threshold is reached when

(
K
w

)
≤ 2k. In the RSD setting, the

uniqueness threshold is achieved when (K/w)w ≤ 2k.

Expected number of solutions. When sampling a random instance (H, y = H · x) of
the RSD problem, the expected number of solutions is given by

1 + E
H,x

[|{x′ : H · x′ = H · x ∧ x′ regular}|] = 1 +
∑
x′ ̸=x

x′ regular

Pr
H,x

[H · x′ = H · x]

= 1 +
1

2k
· ((K/w)w − 1) ,

where the last inequality follows from the standard fact that for any pair of vectors (x, x′),
PrH [H · x′ = H · x] = 1/2k. Therefore, when ((K/w)w − 1)/2k is very small, the solution
x is unique with high probability; when it gets larger, the average number of solutions
increases.

Intuition. In the case of the standard syndrome decoding problem, it is well-known that
the hardness of the problem is maximized around the GV bound. Similarly, the natural
intuition here is that the RSD problem is the hardest when (K/w)w ≈ 2k. In slightly
more details, the “highly injective” setting (where (K/w)w ≪ 2k) cannot be harder than
the threshold setting, since the adversary can always delete equations, transforming the
instance (H, y) into a new instance (H ′, y′) by removing rows of H and entries of y. As
long as the adversary maintains (K/w)w < 2k, it remains likely that the solution to the new
instance (H ′, y′) is still unique. On the other hand, in the highly surjective setting (where
(K/w)w ≫ 2k), the number of solutions grows exponentially, and powerful attacks such as
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the generalized birthday attack (GBA) can be used to recover a solution.

Relation between SD and RSD depending on k and w. The GV bound and the RSD
uniqueness bound allow to clarify the relation between the hardness of the standard syn-
drome decoding problem (SD) and the regular syndrome decoding problem (RSD). These
two bounds delimit three areas depending on the relation between w and k (for a fixed value
of K):

• When 2k ≥
(
K
w

)
, both the SD and RSD problem are injective with high probability.

In this setting, the RSD problem is easier than the SD problem. The straightforward
reduction works as follows: given an RSD instance (H, y), create a random SD instance
(H ′, y′) by shuffling the columns of H and the entries of y, and run the SD solver. By
injectivity, the solution x′ returned by the solver is the shuffled RSD solution x.

• When 2k ≤ (K/w)w, both the SD and RSD problems are surjective with high probabil-
ity. In this setting, the RSD problem is harder than the SD problem. This is because a
regular solution to a random SD instance is in particular a solution for the SD problem.
More formally, when 2k ≪ (K/w)w, one can show that the distribution of random SD
instances and RSD instances become both statistically close to uniform. Precisely, a
simple calculation shows that their statistical distance to the uniform distribution is at
most

√
ε/2, where ε = 2k/(K/w)w for RSD, and ε = 2k/

(
K
w

)
for SD (see e.g. [Deb19]

for a proof of this statement in the case of SD; the adaptation to RSD is immediate).
Therefore, a random SD instance is distributed in particular as a random RSD instance,
and running an RSD solver returns a regular solution, which is in particular a valid
solution to the SD instance.

• Eventually, when (K/w)w ≤ 2k ≤
(
K
w

)
, the relation between SD and RSD becomes

unclear, and their hardness is not directly comparable. In this setting, SD can be
attacked efficiently using GBA, while RSD cannot; on the other hand, variants of
information set decoding attacks (ISD) can be tuned to benefit from the regularity of
the solution.

Furthermore, as previously mentioned, each of SD and RSD is conjectured to be optimally
hard on their respective boundaries. The above discussion is summarized in Figure 5.1. The
parameter choice is also positioned within this framework: as discussed in Section 5.2.2, w
is set to K/6, which is optimal in terms of efficiency for the zero-knowledge proof. The
value of k is selected to ensure that, with overwhelming probability, the only f -weakly valid
solution to RSD is a regular solution, providing security under the standard RSD assumption
for the signature scheme. This setting corresponds to being "in the gray zone," not too far
from the RSD uniqueness bound.

5.5.2 Known Attacks against RSD
Attention is now directed to existing attacks against the regular syndrome decoding as-
sumption. A detailed overview was provided in [HOS+18], covering three types of attacks:
linearization attacks, generalized birthday attacks (GBA), and information set decoding (ISD).
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Figure 5.1: Behaviour of SD and RSD when w and k vary, for a fixed value of K

Unfortunately, much of their description appears to conflate the RSD uniqueness bound
with the GV bound. This confusion may stem from their consideration of both the SD and
RSD problems. Additionally, the attempt to address both SD and RSD attacks simultaneously
led to missed opportunities for optimizing the attack by leveraging the regular structure of
the noise. In the next section, each of these three attacks is revisited, their exact complexity
clarified when applicable in this setting, and tailored specifically to RSD.

5.5.2.1 Generalised Birthday Attack. GBA attacks refer to a family of algorithms
based on Wagner’s divide-and-conquer algorithm for solving generalized birthday problems.
These attacks were first applied to decoding problems by Coron and Joux in [CJ04] and
were subsequently improved in [MS09; BLN+09; Kir11; NCB11]. GBA attacks can be directly
adapted to RSD. However, they are designed for settings where the problem admits a large
number of solutions. Since the focus here is on parameter choices where the average number
of solutions is close to 1, GBA attacks do not apply to these parameters, and a full description
of these attacks is omitted.

5.5.2.2 Linearization Attack. The linearization attack was introduced by Saarinen
in [Saa07]. By leveraging the regular structure of the noise, the attack can be improved by
adding a preprocessing phase that reduces the size of the matrix H . The process involves
dividing the matrix into blocks of K/w columns of H . The first column of each block is
taken and XORed with all other columns, producing a new matrixH ′. Additionally, the first
column of each block of H is XORed to y, resulting in a new syndrome y′. Let x be any
regular solution to H · x = y. It can be observed that:
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= ⊕ ⊕ · · ·⊕ ⊕

H x y

Figure 5.2: Construction of the system H ′ · x′ = y′ from the original system H · x = y.

• It still holds that H ′ · x = y′, as each block of x has weight 1, ensuring that a single
copy of each first column of a block is added to the result when computing H ′ · x.

• The first column of each block of H ′ is now identically 0 and can therefore be deleted.

After this process, a new matrix H ′ ∈ Fk×(K−w)
2 and a new target solution x′ ∈ FK−w

2 are
obtained (where x′ is derived from x by deleting the first entry of each block, which still
uniquely specifies x). The original equation transforms into H ′x′ = y′.
The goal then becomes finding a solution x′ such that each block (of size K/w − 1) has
weight at most one. In some cases, deleting certain entries may have eliminated non-zero
entries.
In the next step, two new matrices are defined: H2 ∈ Fk×(K−w−k)

2 , whose columns are
randomly selected from the columns of the parity-check matrix H ′, and H1 ∈ Fk×k

2 , whose
columns are the remaining ones in H ′. This leads to y′ = H ′x′ = H1x1 + H2x2, with
x1 ∈ Fk

2 and x2 ∈ FK−w−k
2 . At this stage, whenever x2 = 0, the equation simplifies to

y′ = H1x1, whereH1 is a square matrix that is invertible with high probability. The solution
x1 is then computed, x′ is recovered, and it is verified whether the correct solution has been
found. If not, the process is restarted with a new random choice ofH1 andH2. The complete
description of the attack is provided in Protocol 9.

Linearization attacks for RSD

Inputs: A matrix H ∈ Fk×K
2 a syndrome y ∈ Fk

2 and a value w ∈ N.
Output: A regular vector x ∈ FK

2 with Hamming weight HW(x) = w such that Hx = y.

1. Precomputing phase:

• In each block of K/w columns of H , delete the first column and XOR it to all
remaining columns of the block. Denote the new matrix by H ′.

• XOR all deleted columns to the syndrome y, obtaining a new syndrome y′.

The goal is now to find a vector x′ of length K − w with w blocks, each of Hamming
weight 0 or 1, such that H ′x′ = y′.
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2. Permutation phase:

• Write H ′ = [H1|H2] and y′ =

[
y1
y2

]
where H1 ∈ Fk×k

2 .

• IfH−11 y′ is a sparse vector, set x1 = H−11 y′. Otherwise, shuffle the columns of
H ′ and the entries of y′, and start again the permutation phase.

Protocol 9: A variant of linearization attacks tailored to RSD

The expected cost of the attack is computed as follows:

E[cost] =
cost per iteration

success proba per iteration .

The construction of the matrix H2 requires selecting K − w − k columns from the total
K − w columns of the matrix H ′. By selecting the same number of columns for H2 in each
block, (K − w − k)/w = K/w − 1 − k/w columns must be taken from each block. The
attack succeeds if all selected columns correspond to zero entries in the solution vector x′,
meaning that x2 = 0. The probability of this occurrence is now computed.
By construction, each block of x′ has a Hamming weight of 0 with probability w/K , and a
Hamming weight of 1 otherwise. The expected number of blocks with a Hamming weight
of 1 is (1− w/K) · w. The attack succeeds if the K/w − 1− k/w columns selected in each
of these blocks are a subset of theK/w− 2 zero-columns. Thus, the probability of selecting
only zero entries is approximately given by:

P =

[(
K/w−2

K/w−1−k/w

)(
K/w−1

K/w−1−k/w

)](1−w/K)·w

.

In each iteration, the cost is dominated by the cost of solving a k × k random system of
linear equations, which takes about k3 arithmetic operations (for realistic values of k, up to
a few hundreds), or k2.7 (for larger value, using Strassen’s algorithm). This yields a total
expected cost E[cost] = kω/P (with ω an appropriate matrix multiplication exponent).

5.5.2.3 Information Set Decoding Attacks. Information Set Decoding (ISD) is a de-
coding technique to solve the syndrome decoding problem for linear codes. This type of
algorithm was initially introduced in 1962 by Prange [Pra62] and subsequently improved,
first through a polynomial improvement proposed by Lee and Leon [LB88; Leo88] and then
by an exponential improvement by Stern [Ste88] followed by numerous other improve-
ments [FS09; BLP11; MMT11; BJM+12; MO15].
The structure of ISD attacks is tailored to the specific structure of the target noise vector. As
a result, adapting ISD attacks to the RSD setting is not always straightforward. In particular,
it is observed that the most efficient and recent variants of ISD [BJM+12; MO15] utilize the
representation technique. However, the representation technique is specifically designed
for the standard syndrome decoding problem and does not provide any improvement when
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applied to regular noise. For instance, the representation technique would be effective if
different blocks could have, for example, one of two possible weights, as it could introduce
additional equations capturing how the weights are distributed. In the context of RSD,
however, all blocks have the same Hamming weight of 1, and a direct application of the
representation technique does not outperform a standard birthday algorithm. An open ques-
tion remains, and is left for future work, regarding the possibility of finding an alternative,
indirect way of leveraging the representation technique to enhance the attack.
However, it appears that pre-representation technique ISD variants can be adapted to the
RSD setting. Furthermore, this adaptation significantly simplifies and improves the attack. At
a high level, this is because knowing that the noise is regular significantly reduces the search
space. More formally, the adaptation starts from the Generalized ISD algorithm defined
by Finiasz and Sendrier [FS09]. This is the same variant that was discussed in [HOS+18];
however, their description appears to confuse the GV bound with the RSD uniqueness
bound. Furthermore, a complete description of the attack was not provided, and a few
natural optimizations to reduce the search space in the RSD setting were apparently missed
(probably because the aim was for a unified description covering both SD and RSD).
Fix an RSD instance (H, y)with noise weight w. The algorithm is a two-step algorithm, with
a first step consisting of a Gaussian elimination (which includes a permutation) resulting in
a new instance with a new noise vector x′, and a second step in which the noise vector is
broken into two vectors x′ = x1||x2 (the purpose being to later use the birthday paradox
to find a candidate solution x1). The Finiasz-Sendrier algorithm proceeds by searching for
two vectors of the same length as x1 but with half weight and whose sum is x2 (using a
procedure called submatrix matching). In the following, several improvements to this attack
are described.
The first observation relates to the choice of partitioning x1 as a sum of two vectors of the
same length, rather than performing the birthday search over vectors whose concatenation
forms x1. This choice arises from the random permutation used in the first step: although
the initial error x has a regular structure, random permutation removes this regularity. As
a result, if x1 were written as a concatenation of two half-length vectors, there would be
no guarantee that each has half of the total Hamming weight. This would introduce an
additional overhead, requiring consideration of all possible partitions of the weight w.
This setting avoids this problem. Since the target RSD matrix is provided in systematic
form H = [H ′|Ik], there is no need to apply a random permutation to H ; instead, the initial
regular noise vector x can be used directly. This regular structure can be exploited: as
the weight is perfectly balanced within each block of the error, x can be rewritten as a
concatenation of two vectors x = x1||x2 with weight w/2 each. This significantly reduces
the length of the target vector x1, enabling a birthday paradox search and resulting in
a substantial reduction in the total cost of the attack. A full description of the attack is
provided in Protocol 10.
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Information Set Decoding Algorithm

Inputs: A matrix H ∈ Fk×K
2 in standard form H = [H ′|Ik], a syndrome y ∈ Fk

2 and a value
w ∈ N.
Output: A vector x ∈ FK

2 with Hamming weight HW(x) = w and such that Hx = y.
Parameters: 0 ≤ q ≤ k and 0 ≤ p ≤ r + q with r = K − k.
repeat

1. Rewriting the matrix

H =
[
H ′|Ik

]
=

[
H ′

Iq 0

0 Ik−q

]
=

[
H1 Iq 0

H2 0 Ik−q

]
=

[
R1 0

R2 Ik−q

]

where R1 = [H1|Iq] ∈ Fq×r+q
2 and R2 = [H2|0] ∈ Fk−q×r+q

2 and the vectors

y =

[
y1
y2

]
x =

[
x1
x2

]

where y1 ∈ Fq
2, y2 ∈ Fk−q

2 , x1 ∈ Fr+q
2 , x2 ∈ Fk−q

2 .

2. Computing submatrix problem, solving the reduced problem R1x1 = y1 where
HW(x1) = p = r+q

K/w :

• Rewrite R1 = R̄||R̃

• For all the words e1 ∈ F
r+q
2

2 of weight p
2 = r+q

2K/w , create the list L̄ = {R̄e1};

• For all the words e2 ∈ F
r+q
2

2 of weight p
2 = r+q

2K/w , create the list L̃ = {R̃e2+ y1};

• Search for a collision between L̄ and L̃;

• For each collision (e1, e2) if HW(y2 + R2(e1||e2)) = w − p = k−q
K/w then set

x1 = e1||e2.

3. Extend solution computing x2 = y2 +R2x1

Protocol 10: An Information Set Decoding algorithm tailored to the RSD setting with matrix in systematic form

Let’s now analyze the cost of this attack. The creation of the two lists L̄ and L̃ requires, for
all the 6

r+q
K/w possible vectors of length r+q

2
and weight r+q

2K/w
, a matrix-vector multiplication

R̄ · e1, R̃ · e2. The total cost for this step is therefore about (K/w)
r+q

2K/w · q · r+q
2K/w

. The
search for a collision between the two lists takes linear time. Since both lists are of length
(K/w)

r+q
2K/w , this brings to the total cost a value of (K/w)

r+q
2K/w · q · r+q

2K/w
. The last step in

which for each collision the weight is checked by doing a matrix-vector multiplication costs
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(K/w)r+q

2q
· (k − q) · r+q

K/w
. So the total cost of the attack presented in 10 is roughly

[
q · r + q

K/w
· (K/w)

r+q
12

]
+

[
(K/w)

r+q
K/w

2q
· (k − q) · r + q

K/w

]
(5.3)

To maximize the possibility of finding a collision between the two lists and at the same
time the possibility that the check on the weight in the final step has a positive result, it
is necessary that there is no imbalance between the cost of step 2 and the cost of step 3.
This can be ensured by requiring that the two parts of 5.3 balance each other. Hence, by

imposing q · r+q
K/w
· (K/w)

r+q
2K/w = (K/w)

r+q
K/w

2q
· (k − q) · r+q

K/w
the following value is obtained:

q

(
1− log2(K/w)

2K/w

)
+ log2

(
q

k − q

)
= (K − k)

(
log2(K/w)

2K/w

)
(5.4)

Solving 5.4 for q and injecting the resulting value in 5.3 yields the lowest possible cost for
the attack.

5.5.3 An Approximate Birthday Paradox Attack
In this section, a new attack on regular syndrome decoding is described. Informally, the
attack resembles the ISD variant discussed in the previous section but applies the birthday
paradox algorithm at a different step, removing the need to optimize over the choice of a
value q altogether. In exchange, the attack requires more than a standard birthday collision
search: it involves an approximate collision search between two lists (where approximate
means finding two strings whose XOR results in a sparse regular vector — that is, the target
strings are identical except for differing in exactly one coordinate per block).
Approximate collision searches have previously been assumed in the literature to take linear
time. However, it is important to emphasize that no strict linear time algorithm (in the size
of the lists) is currently known for solving this variant of the approximate collision search.
Finding such an efficient algorithm is considered an interesting open problem. For the sake
of conservativeness in parameter choices, it is assumed that an approximate collision can
be found in the (linear) time required to scan the lists. It is noted that the existence of a
strictly linear time algorithm is far from obvious, and this assumption may therefore be
overly conservative.

5.5.3.1 The basic attack. The idea behind the attack is elaborated below. Starting from
the RSD instance (H, y) where H ∈ Fk·K

2 and y ∈ Fk
2 with solution x ∈ FK

2 of weight w, H
and x are rewritten as follows:

H = [H ′|Ik] =
[
H̄|H̃|Ik

]
and x =

[
x1

x2

]
=

 x̄
x̃
x2

 ,

where x̄, x̃ ∈ F
r
2
2 , and x2 ∈ Fk

2 . From this point, the attack proceeds in two simple steps:
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1. Search step of an "almost collision" between two lists:

y = Hx =
[
H̄|H̃|Ik

] x̄
x̃
x2

 = H̄x̄+ H̃x̃+ x2

This implies that (
H̃x̃+ y

)
+
(
H̄x̄
)
= x2. (5.5)

Since x2 is a sparse vector, the problem reduces to finding two vectors x̄, x̃ such
that

(
H̃x̃+ y

)
+
(
H̄x̄
)
is sparse. This can be done by storing all possible values of(

H̃x̃+ y
)
and

(
H̄x̄
)
in respective lists L̃ and L̄, and then searching for an almost-

collision between the two lists.

2. Extend the partial solution obtained in the previous step: given (x̄, x̃), set x1 =

[
x̄
x̃

]
and compute x2 as H ′x1 + y.

5.5.3.2 Improving the attack by extending the matrix. The basic attack can be
improved by allowing the adversary to append additional equations to the parity-check
matrix and then bring it back to systematic form (this requires only row operations and does
not alter the structure of the solution). At a high level, each additional equation encodes
the information that each block of the target noise vector has an odd Hamming weight.
Specifically, letting h′i denote the vector whose entries are all 0, except for a "band of ones"
in the i-th block, the inner product between h′ and x must be equal to 1. This allows the
adversary to add w additional rows to the matrix H before executing the attack described
above. The full attack is detailed in Protocol 11.

Approximate Birthday Paradox Attack on RSD

Inputs: A matrix H ∈ F(k+w)×K
2 with H = [H ′|M ], a syndrome y ∈ Fk+w

2 , and a value
w ∈ N. It is assumed that the matrix H has been extended with w additional rows and that
y has been extended with ones, capturing the fact that each block of x has odd Hamming
weight.
Output: A regular vector x ∈ FK

2 with Hamming weight HW(x) = w such that Hx = y.
Parameters: r = K − k − w

1. Write H ′ = H̄|H̃ ;

2. Search for an almost collision:

• Using all regular words x̄ ∈ F
r
2
2 of weight r

2K/w , create the list L̄ = {M−1 · H̄x̄};

• Using all regular words x̃ ∈ F
r+q
2

2 of weight r
2K/w , create the list L̃ = {M−1 ·

(H̃x̃+ y)};
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• Search for an almost collision (x̄, x̃) between L̄ and L̃ and set x1 = x̄|x̃;

3. Extend the solution by computing x2 = y +H ′x1.

Protocol 11: An Approximate Birthday Paradox Attack on Regular Syndrome Decoding.

5.5.3.3 Cost of the attack. The second step of the attack, the creation of the lists L̄ and
L̃ of size (K/w)

r
2K/w each, costs 2 · (K/w)

r
2K/w · r

2K/w
· k = (K/w)

r
2K/w

−1 · r · k. For the
sake of being conservative finding an almost-collision is assumed to take linear time, and
bound the cost as

cost ≥ (K/w)
r

2K/w
−1 · r · k (5.6)

5.5.3.4 A note on optimizing security. In the chosen parameter setting, the above
attack significantly outperforms the ISD variant and the linearization attack described in the
previous section. Furthermore, the larger the value of k, the more efficient the attack gets.
Therefore, the optimal parameter choice is obtained by minimizing the value of k, while
maintaining the constraint that the resulting RSD instance does not have too many solutions
with high probability (otherwise, GBA attacks could apply). This is in line with the intuition
that optimal parameter choices belong to the RSD uniqueness curve (see Figure 5.1).

5.5.4 From RSD to Almost-RSD
The security of the new signature scheme does not directly reduce to the regular syndrome
decoding problem but rather to an almost-regular syndrome problem. This arises from the
fact that the zero-knowledge proof of knowledge described in Section 5.2.2 has a soundness
gap: while an honest witness is assumed to be a standard regular vector, the soundness only
guarantees that an f -almost-regular (or f -almost-antiregular) vector can be extracted from
a malicious prover. Here, f -almost-regular means that the extracted vector x is divided into
w blocks such that all blocks except f have a Hamming weight of 1, and the f remaining
blocks can have any odd weight (in this setting, weights of 1, 3, or 5, since the block size is
fixed at 6).
This variant of RSD, informally referred to as f -almost-RSD, is a plausible assumption, albeit
somewhat exotic. In the main choice of parameters for the signature scheme, the aim is to
reduce security to the standard RSD assumption instead. To achieve this, a parameter setting
is used where almost-RSD is in fact equivalent to RSD. Concretely, the instance (K, k, w) is
chosen with two constraints: first,K/w = 6 is enforced, and second, k is set as follows:

k ←

⌈
log2

(
f∑

i=0

6w−i ·
(
w

i

)
· 26i

)⌉
+ λ.

This guarantees that
∑f

i=0 6
w−i ·

(
w
i

)
· 26i ≤ 2k−λ. Intuitively, without the +λ term, the

above would correspond to the f -almost-RSD uniqueness bound, i.e. the threshold above
which there is, on average, a single almost-regular solution to a random RSD instance. The
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left-hand side of the inequality represents the total number of regular vectors with w − f
blocks of weight 1 and f blocks of weight 1, 3, or 5 — that is, the space of solutions with the
correct structure. Let (H, y) be a random RSD instance, where y is computed as H · x for a
random regular vector x. With the +λ term, the inequality guarantees that the probability
of any additional solution beyond x existing is at most 2−λ. In this regime, the almost-RSD
problem becomes equivalent to the standard RSD problem: except with probability 2−λ, any
almost-regular solution to the problem must be the only regular solution.
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This chapter presents two contributions to the field of signature schemes constructed from
the MPC-in-the-head (MPCitH) paradigm:

• The notion of multi-instance puncturable pseudorandom function (PPRF) is introduced,
along with an efficient instantiation from the AES block cipher, formally proven secure
in the ideal cipher model. This construction can replace the hash-based PPRF used in
most previous MPCitH signatures, improving both signing time and verification time
(e.g., from 12× to 55× in experiments with the recent scheme of [HJ24]).

• The MPCitH signature based on the regular syndrome decoding (RSD) problem, intro-
duced in the previous chapter, is enhanced in all aspects by incorporating the new
PPRF structure. This improvement results in its unforgeability being tightly reduced
to the multi-instance security of the underlying PPRF, showcasing how this new
primitive leads to better security reduction.
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6.1 Problem Statement

All state-of-the-art MPCitH signature schemes rely on a puncturable pseudorandom function
(PPRF), which allows generating a large number n of pseudorandom strings such that, given
an index i, the signer can reveal all pseudorandom values except the i-th one using an
“opening” of size λ · log n (where λ is a security parameter). The de facto PPRF originally
used in prominent works such as Picnic [ZCD+20] was the GGM PPRF [GGM86], where
the PRF evaluation on input i with key K is the i-th leaf of a full binary tree with root
labeled with K . In GGM, the labels of the two children of a node x are computed as F(x) =
(F0(x),F1(x)) using a length-doubling pseudorandom generator (PRG) x 7→ (F0(x),F1(x)).
The PRG is typically instantiated as x 7→ (x ⊕ π0(x), x ⊕ π1(x)) for a pair of random
invertible permutations (π0, π1): this instantiation yields a provably secure construction in
the random permutationmodel [GKW+20] and enables fast expansion when instantiating the
permutations using the AES block cipher with a fixed key (leveraging hardware acceleration).
However, as observed in [DN19], in the context of signatures, this choice allows for a
devastating multi-target attack: after 2t signature queries, an attacker can find the root of
one of the GGM trees using 2128−t work on average, and recover the secret signing key upon
finding a collision.
In response to this vulnerability, Picnic [ZCD+20] and most recent MPCitH signature
schemes, including BBQ [DDO+19], Banquet [BDK+21], and the NIST post-quantum
candidates (e.g., SDitH [CHT23], MIRA [ABC+23], MiRitH [ABB+23], MQOM [BFR23],
PERK [GSR23], Ryde [DGO+23], and Biscuit [BKP+23]), switched to hash-based PRGs,
e.g., Fb(x, i, salt)← H(x∥i∥b∥salt), where i is the parent node index and salt is a random
salt included in the signature. Unfortunately, replacing AES with a hash function incurs
significant performance overhead, being up to 50× slower according to [GKW+20].
The following simple observation forms the foundation for this chapter’s contributions:
in the AES-based instantiation, instead of relying on a global fixed key for all instances
(as in Picnic [ZCD+20]), a per-signature random AES key can be used as the salt. This
eliminates costly re-keying at every tree node while maintaining block size efficiency.
While the idea of rotating the key is not particularly novel (it has been mentioned in
contexts such as [Roy22]), it motivates the introduction of multi-instance PPRFs, defined
as F(x,K0, K1) = (x ⊕ AESK0(x), x ⊕ AESK1(x)), to capture the security requirements
needed to prevent multi-target attacks precisely. Unlike previous works that directly proved
full signature constructions in the ROM, this approach adopts a more modular methodology.
Furthermore, a formal proof establishes the multi-instance security of the AES-based PPRF
in the ideal cipher model using Patarin’s H-coefficient technique [Pat09; CS14].
This analysis induces a security loss of logD + 3 bits, where D is the GGM tree depth. For
example, ifD = 8, the loss is 6 bits. The 3-bit loss stems from bounding the attacker’s worst-
case runtime (2−λ probability implies 2λ runtime), reducible to 1 bit for expected runtime.
The log2D loss arises from the PRG-to-PRF reduction and is inherent to the construction.
To mitigate the log2D loss, a variant is proposed: D key pairs (Ki

0, K
i
1)i≤D, derived from

a PRG-stretched 2λ-bit salt, are assigned to each tree level. This increases AES rekeyings
from 2 to 2D, though the cost is negligible (with D ∈ [8, 16]). It is conjectured that this
variant achieves λ− 3 bits of security (λ− 1 for expected runtime), though a direct proof in
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the ideal cipher model remains an open problem.
Replacing hash-based PPRFs with the AES-based construction is expected to yield substantial
efficiency gains, especially where GGM tree expansion dominates runtime. Testing on the
scheme of [HJ24], presented at CRYPTO’24, shows runtime improvements of 12× forD = 8
and 55× for D = 16, as shown in Table 6.1.

[HJ24] D τ |σ| signing verification
hash-based PPRF 8 16 6.2 kB 9.24 ms 9.11 ms

16 8 4.1 kB 1.1 s 1.1 s
AES-based PPRF 8 16 6.2 kB 0.80 ms 0.71 ms
(this work) 16 8 4.1 kB 19.5 ms 19.2 ms

Table 6.1: Case analysis of the impact of using the faster AES-based multi-instance PPRF on the signature scheme

of [HJ24] for two sets of parameters: D = 8 (fast signing) andD = 16 (short signatures) compared to the standard

hash-based construction. D denotes the depth of the GGM tree (equivalently, 2D corresponds to the number of

virtual parties in the MPC protocol run “in the head”), and τ to the number of repetitions to achieve 128 bits of

security. All schemes run on one core of an AMD EPYC 9374F processor clocked at 3.85GHz.

In this chapter the signature presented in the previous chapter is significantly improved in
several aspects, using several new techniques to provide more flexible parameter choices
and improved performances. Of course, the first ingredient is the just improved (PPRF)
tailored to MPC-in-the-head signatures that uses a salted-GGM tree based on AES, which
achieves the same performances as the best unsalted GGM PPRF constructions, without
suffering from collision-based attacks.
To obtain improved performances compared to the previous signature, the regular syndrome
decoding instances are encoded using a sparse representation on top of the dense repre-
sentation used in the older one. Sparsely encoding regular syndrome decoding instances is
quite natural and relies on the use of an indicator vector to locate the non-zero positions.
However, such a representation is not compatible with the secret sharing techniques that are
used to split the key between the virtual parties that are introduced by the MPC-in-the-head
paradigm: to use sparse representations, it is necessary to develop new conversion tech-
niques involving both types of representations. Along the way, the presented scheme relies
on a mechanism to prevent cheating behavior in the conversion, which requires a highly
non-trivial combinatorial analysis. Overall, the new signature scheme is more than 30%
shorter compared to the scheme of Protocol 6 and can use significantly more conservative
parameter sets, for similar runtimes.
The implementation of the signature scheme is a proof-of-concept and does not use any
optimizations such as batching, vectorization, or bit slicing. Nevertheless, it confirms
that the scheme exhibits excellent performance. Since for the previous signature (Section
5.4) there is no implementation, the scheme is compared to SDitH, the state-of-the-art
MPCitH signature from syndrome decoding [CHT23], that makes use of batching techniques
and advanced hardware instructions. In addition, tight estimates are provided for the
performance improvements resulting from integrating the fast folding optimization of [HJ24]
into this scheme and into SDitH (while the implementation of [HJ24] is used to obtain
runtimes for the faster folding, it is noted that a full-fledged implementation of the scheme
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integrating the folding optimization is not yet available). Below is a sample of parameters:

• (fast) signature size 6.5kB, signing time 1.40 ms

• (medium) signature size 5.7 kB, signing time 3.56 ms

• (compact) signature size 4.9 kB, signing time 23.9 ms.

Refer to Table 6.4 for more details on parameters and implementation.
The scheme is compared to SDitH [AGH+23], the fastest known code-based signature scheme
to date, by running both schemes on the same hardware and for comparable parameter sets.
To better isolate the effect of the improved PPRF, SDitH is also benchmarked with their
PPRF replaced by the improved construction,1 as well as this scheme using the hash-based
PPRF of SDitH. For both, the folding optimization of [HJ24] is integrated. Benchmarks are
summarized in Table 6.2. Even when comparing the unoptimized implementation to the
optimized implementation of [CHT23], 3× to 4× runtime improvements for D = 8 (with
signatures of comparable size) are observed.

D τ |σ| signing time
SDitH (hash-PPRF) 8 17 8.2 kB 6.82 ms

12 11 6.0 kB 46.8 ms
SDitH (AES-PPRF) 8 17 8.2 kB 6.05 ms

12 11 6.0 kB 37.9 ms
SDitH (AES-PPRF+) 8 17 8.2 kB 6.03 ms

12 11 6.0 kB 31.5 ms
This scheme (hash-PPRF) 8 17 7.8 kB 4.07 ms

12 11 6.1 kB 43.83 ms
This scheme (AES-PPRF) 8 17 7.8 kB 1.65 ms

12 11 6.1 kB 19.1 ms
This scheme (AES-PPRF+) 8 17 7.8 kB 0.64 ms

12 11 6.1 kB 2.13 ms

Table 6.2: Comparison of the new signature scheme with SDitH for D = 8 and D = 12, with and without the

improved multi-instance puncturable pseudorandom function (denoted AES-PPRF* and hash-PPRF respectively)

and with or without integrating the folding optimization of [HJ24] (denoted AES-PPRF+ and AES-PPRF respectively).

All schemes were run on one core of an Intel Core i7 processor 14700KF at 3.4 GHz frequency.

1In the conference version of their work, the construction of [AGH+23] initially used an unsalted GGM
tree (instantiated using AES), which is shown to be insecure (with a concrete attack that breaks the scheme
using 240 signatures in time 269). The authors later fixed this issue in their NIST submission [CHT23], using a
proper salted GGM tree instantiated with a hash function.
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6.2 New Puncturable Pseudorandom Functions for
MPCitH

The starting point is the GGM puncturable pseudorandom function [KPT+13; BW13; BGI14;
GGM86], which is used in all modern MPC-in-the-head protocol, in which the prover
generates shares of the witness –eventually together with shares of some appropriate
preprocessing material– to be distributed among the n virtual parties such that, in the last
round the prover will reveal n− 1 out of n shares to the verifier.
Since a puncturable pseudorandom function (PPRF) is a PRF F such that given an input x,
and a PRF key k, allows evaluating F at every point except for x, (see section 3.4.5 for more
detail) it is clear that these functions can be used to significantly optimize the last step of
MPCitH protocols: using a PPRF, the prover can define all seeds sdi as outputs of the PRF,
using a master seed sd∗ as the PRF key. Then, revealing the key sd∗ punctured at a point i
suffices to succinctly reveal all seeds (sdj)j ̸=i while hiding sdi. Concretely, using the GGM
PPRF [GGM86], the prover generates N seeds sd1, · · · , sdN as the leaves of a binary tree of
depth ⌈log2N⌉, where the two children of each node are computed using length-doubling
pseudorandom generators. This way, revealing all seeds except sdi requires only sending
the seeds on the nodes along the co-path from the root to the i-th leave, which reduces the
communication from λ · (N − 1) to λ · ⌈log2N⌉.

Salted GGM Tree Unfortunately, MPC-in-the-head can suffer from collision attacks if the
GGM PPRF is used as is, as shown in [DN19]: after approximately 2λ/2 signature queries,
collisions in the master seed sd∗ may leak the secret signing key. To address this, previous
works have introduced a 2λ-bit salt, but its integration into the GGM PPRF is inconsistent,
leading to either ambiguity or insecurity. Specifically:

• In Banquet [BDK+21], and in the more recent work of [AGH+23], the seeds
(sd1, · · · , sdn) are generated from an unsalted GGM PPRF, and the salt is only used at
the leaves, when stretching the share of each party Pi from its seed as PRG(sdi, salt).

• In [FJR22] and in 5.4, the signature description loosely states that (sd1, · · · , sdn) are
generated in a tree-based fashion using the master seed sd∗ and the salt salt. However,
the way the salt is used within the GGM construction is not specified precisely.

It is observed that using the salt only at the leaves, as in [BDK+21; AGH+23], does not shield
the signature from collision attacks. The attack proceeds as follows:

• An attacker queries m signatures. Each signature will contain some number τ of
⌈log2N⌉-tuples of intermediate PRG evaluations (corresponding to the seeds on the
co-path to the unopened leave; τ corresponds to the number of repetitions of the
underlying identification scheme). Let (sd1, · · · , sdk) denote all seeds received this
way, where k = m · τ · ⌈log2N⌉.

• The attacker locally samples random seeds sd and evaluates its two children
(sd0, sd1)←$ PRG(sd), until one of the sdb collides with some sdi.
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• Since the preimage of sdb is known, the parent seed of sdi is recovered, from which
the seed associated with the unopened leave in one of the signatures can be computed.

• Given this seed, and using the salt salt associated with the signature (which is public),
the attacker reconstructs all virtual parties’ shares and reconstructs the secret witness
(the AES secret key in [BDK+21], the syndrome decoding solution in [AGH+23]).
Using the witness, arbitrary signatures can now be forged.

As is clear from the above description, adding salt to the leaves has absolutely no effect on
the security of the signature against this collision attack. Efficiency-wise, after receiving m
signatures, an attacker finds a collision in time 2λ/(m · τ · ⌈log2N⌉). For example, using
λ = 128, n = 216, and τ = 9 (this is a parameter set from [AGH+23]), after seeing only
m = 240 signatures, the scheme can be broken in time ≈ 269.
The attack described appears to stem from presentation issues in the respective papers, as
some implementations already address it. For instance, Banquet2 includes salt within all inter-
mediate tree computations, and the updated NIST submission [CHT23] based on [AGH+23]
resolves the problem in its implementation.
However, efficiency concerns remain: unsalted GGM trees can use fixed-key AES efficiently
with Intel AES-NI [GKW+20], but adding salt complicates its usage. Instead, implementations
such as Picnic [ZCD+20], BBQ [DDO+19], Banquet [BDK+21], and recent schemes based
on [AGH+23] rely on a hash function (such as SHAKE): sdb ← H(sd|i|j|b|salt), where i is
the parent node index, and j ≤ τ is a counter for the identification scheme repetitions. This
approach, however, is up to 50× slower than using AES (see Table 6.3), which significantly
impacts protocols like those in [AGH+23], where tree generation dominates signing time.

D τ AES SHA3 SHAKE
9 16 0,04ms 26,59ms 39,42ms
11 13 0,11ms 66,1ms 100ms
13 11 0,21ms 122ms 179,77ms
15 10 0,21ms 122,95ms 178,2ms

Table 6.3: Comparison of the utilization speeds of AES and hash functions in the instantiation of the GGM tree.

A fast salted GGM tree in the ideal cipher model This chapter introduces a new salted
GGM tree construction that matches the efficiency of the fastest unsalted GGM trees while
offering stronger security guarantees. A formal security proof (Theorem 6.2.1) demonstrates
that the construction is a multi-instance secure PPRF, a notion introduced in section 6.2.1.
Unlike standard PPRFs, which incur a security loss proportional to the number of signature
queries (as illustrated by the attack), the unforgeability of MPCitH signatures reduces tightly
to the multi-instance security of the PPRF.
The multi-instance PPRF is based on a very simple idea: using the top-performing GGM
construction from a fixed-key block cipher and treating the cipher key as the salt. While

2https://github.com/dkales/banquet
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intuitive, the security proof (Theorem 6.2.1), conducted in the ideal cipher model, is tech-
nically challenging. It relies on the H-coefficient technique of Patarin [Pat09; CS14] and
combines it with a balls-and-bins analysis to measure the number of seed and cipher key
collisions and tightly estimate their impact on security.

A PPRF in the Random Permutation Model
The starting point is a PPRF construction from [GKW+20], which is a tweak on the origi-
nal GGM construction, where the PRG is instantiated with the following “Davies-Meyer”
function:

G : x→ (π0(x)⊕ x, π1(x)⊕ x) .

In this construction, (π0, π1) are two fixed pseudorandom permutations. Using this PRG,
the construction of the PPRF proceeds in a tree-based fashion: a PPRF keyK ←$ {0, 1}λ is
sampled. On input x = (x1, · · · , xn), the PPRF FK returns

Gxn(Gxn−1(· · ·Gx1(K) · · · )),

where G0, G1 denote the left and right half of the output of G, respectively. Puncturing x is
done by computing all values on the co-path to x in the tree, i.e., the values

Gx̄i
(Gxi−1

(· · ·Gx1(K) · · · ))

for i = 2 to n: knowing the values on the co-path allows reconstructing the entire tree
except for FK(x), whose values are pseudorandom under the security of G. To prove the
security of the construction, the authors of [GKW+20] rely on the random permutation

model, where (π0, π1) are modeled as two independent random permutations.
In [GKW+20], the motivation for introducing the construction is that, in practice, π0, π1

can be instantiated using the AES block cipher with two fixed keys (K0, K1). This allows
G to be evaluated using two calls to AES, which is extremely fast when using the AES-NI
hardware instruction set (encrypting with AES using AES-NI takes as little as 1.3 cycles
per byte according to [MSY21]). Furthermore, the entire construction requires only two
executions of the AES key schedule. This GGM construction remains, by a significant
margin, the fastest known PPRF and has been featured extensively in recent works on
function secret sharing [GI14; BGI15; BGI16b; BGI19; BCG+21], pseudorandom correlation
generators [BCG+18; BCG+19b; BCG+19a; BCG+20b; YWL+20; WYK+21; CRR21; BCG+22],
and many others. It is also the construction suggested in [AGH+23], though, as shown
above, it is insecure in the context of signatures.
Observing that this fast PPRF construction is typically instantiated using a block cipher
suggests the following idea, which is very natural in retrospect: use the above construction
but instantiate (π0, π1) using a block cipher (such as AES) and use the block cipher keys

(K0, K1) as a random salt. This means that in each instance, the pair (K0, K1) will be
sampled at random. When using AES, this introduces no changes to the efficiency of the
construction, since, in each instance, the AES key schedule still needs to be executed only
twice. Yet, with this modification, there is potential for the use of fresh cipher keys in distinct
instances to prevent collision attacks.
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6.2.1 Multi-istance PPRFs and PRGs
To formalize this idea, in the following sections, the notion of multi-instance puncturable
pseudorandom function is introduced. An efficient construction from a block cipher is
described, and its security is formally proven in the ideal cipher model.

Multi-instance PPRFs
At a high level, an N -instance PPRF is a PPRF that additionally takes as input a random
salt: in the N -instance security game N keys (k1, · · · , kN), inputs (x1, · · · , xN), and salts
(salt1, · · · , saltN) are sampled randomly, along with a bit b←$ {0, 1}. The adversary is given
((x1, salt1), · · · , (xN , saltN)) and the punctured keys (k1{x1}, · · · , kN{xN}). If b = 0, it
additionally receives (FK(x1, salt1), · · · , FK(xN , saltN)); otherwise, it receives N random
outputs (y1, · · · , yN). The adversary wins by correctly guessing b. The PPRF is N -instance
(t, ε)-secure if no t-time adversary has an advantage greater than ε.
For constructions involving τ parallel calls to the PPRF with the same salt –such as signatures
constructions that involve τ parallel instances of the PPRF with the same salt– the notion
extends to (N, τ)-instance security, accounting for N instances of τ repetitions, where the
salt varies across instances –signature queries– but remains constant within repetitions.
The formal definition is below.

Definition 6.2.1 ((N, τ)-instance (t, ϵ)-secure PPRF). A function family F = {FK} with
input domain [2D], salt domain {0, 1}s, and output domain {0, 1}λ, is an (N, τ)-instance

(t, ϵ)-secure PPRF if it is a PPRF which additionally takes as input a salt salt, and for every

non-uniform PPT distinguisher D running in time at most t, it holds that for all sufficiently

large λ,

AdvPPRF(D) = |Pr[Exprw-pprfD (λ) = 1]− Pr[Expiw-pprfD (λ) = 1]| ≤ ϵ(λ)

where the experiments Exprw-pprfD (λ) and Expiw-pprfD (λ) are defined below.

Exprw-pprfD (λ) :

• ((Kj,e)j≤N,e≤τ ←$ ({0, 1}λ)N ·τ

• salt := (salt1, . . . , saltN)←$ {0, 1}s

• i := ((i1,e)e≤τ , . . . , (iN,e)e≤τ )←$ [2D]N ·τ

• ∀j ≤ N, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

• (yj,e)j≤N,e≤τ ← (FKj,e
(ij,e, saltj))j≤N,e≤τ

Output b← D
(
salt, i, (K

ij,e
j,e , yj,e)j≤N,e≤τ

)

Expiw-pprfD (λ) :

• ((Kj,e)j≤N,e≤τ ←$ ({0, 1}λ)N ·τ

• salt := (salt1, . . . , saltN)←$ {0, 1}s

• i := ((i1,e)e≤τ , . . . , (i1,e)e≤τ )←$ [2D]N ·τ

• ∀j ≤ N, e ≤ τ : K
ij,e
j,e ← F.Punc(Kj,e, ij,e)

• (yj,e)j≤N,e≤τ ←$ ({0, 1}λ)N ·τ

Output b← D
(
salt, i, (K

ij,e
j,e , yj,e)j≤N,e≤τ

)
The actual construction satisfies a stronger property, wherein indistinguishability is pre-
served even when the ideal world experiment not only samples (y1, · · · , yN) uniformly
at random but also samples "fake" punctured keys Kxk

j uniformly at random over an ap-
propriate domain. While this stronger notion is not strictly necessary for the signature
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construction, its use simplifies the analysis. The definition is explicitly stated below for
the punctured key domain corresponding to the (GGM-based) construction, but the notion
extends naturally to arbitrary domains.

Definition 6.2.2 ((N, τ)-instance strongly (t, ϵ)-secure PPRF). A function familyF = {FK}
with input domain [2D], salt domain {0, 1}s, output domain {0, 1}λ, and punctured key domain

({0, 1}λ)D is an (N, τ)-instance (t, ϵ)-secure PPRF if it is a PPRF which additionally takes as

input a salt salt, and for every non-uniform PPT distinguisher D running in time at most t, it

holds that for all sufficiently large λ,

AdvPPRF(D) = |Pr[Exprw-pprfD (λ) = 1]− Pr[Expiw-spprfD (λ) = 1]| ≤ ϵ(λ),

where the experiment Expiw-spprfD (λ) is defined as Expiw-pprfD (λ), except that the line ∀j ≤ N, e ≤
τ : K

ij,e
j,e ← F.Punc(Kj,e, ij,e) is replaced by ∀j ≤ N, e ≤ τ : K

ij,e
j,e ←$ ({0, 1}λ)D.

As a first step toward proving the security of the construction, the similar (but simpler)
notion of (N, τ)-instance (t, ε)-secure PRG is introduced.

Multi-Instance PRGs In this section, the notion of (N, τ)-instance (t, ε)-secure pseu-
dorandom generator is introduced, extending the concept of pseudorandom generators to
the multi-instance setting (with salt) analogously to the definition of multi-instance PPRFs.
It is then demonstrated that the standard GGM construction extends immediately to the
multi-instance setting: (length-doubling) (N, τ)-instance (t, ε)-secure PRGs imply (N, τ)-
instance strongly (t,D · ε)-secure PPRFs with input domain [2D] and punctured key domain
({0, 1}λ)D. The process begins by defining (N, τ)-instance (t, ϵ)-secure length-doubling
PRGs. To interface more easily with the tree-based GGM construction of PPRFs, (F0,F1) is
used to denote functions that compute the left half and right half of the length-doubling
PRG output.

Definition 6.2.3 ((N, τ)-instance (t, ϵ)-secure PRG). A PRG PRG = (F0,F1) with Fb :

{0, 1}2λ → {0, 1}λ is an (N, τ)-instance (t, ϵ)-secure length-doubling PRG if for every non-

uniform PPT distinguisher D running in time at most t, it holds that for all sufficiently large

λ,

AdvPRG(D) = |Pr[Exprw-prgD (λ) = 1]− Pr[Expiw-prgD (λ) = 1]| ≤ ϵ(λ),

where Exprw-prgD (λ) and Expiw-prgD (λ) are defined below.
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Exprw-prgD (λ) :

• (salt1, salt2, . . . , salt2N)←r {0, 1}λ

• (sdi,e)i≤N,e≤τ ←r ({0, 1}λ)N ·τ

• ∀i ≤ N, e ≤ τ :

– y2i−1,e ← F0(sdi,e, salt2i−1)

– y2i,e ← F1(sdi,e, salt2i)

Output b← D
(
(salti, (yi,e)e≤τ )i≤2N

)

Expiw-prgD (λ) :

• (salt1, salt2, . . . , salt2N)←r {0, 1}λ

• (yi,e)i≤2N,e≤τ ←r ({0, 1}λ)2N ·τ

Output b← D
(
(salti, (yi,e)e≤τ )i≤2N

)
The definition extends naturally to PRGs that stretch their seeds by a larger factor. Addition-
ally, in the definition above, it is assumed that each of F0 and F1 takes a distinct λ-bit salt.
While the definition can be generalized to accommodate more flexible salting procedures, it
is formulated concerning the specific use of salt in the actual construction for notational
simplicity. Notably, the fact that each Fb operates with only λ bits of salt is a crucial aspect
resulting from the use of block ciphers, which also makes the security analysis significantly
more complex.

6.2.2 Contrusction of a multi-instance PPRF using a multi-instance
PRG

Given a seed sd←$ {0, 1}λ, salt salt := (salt0, salt1)←$ {0, 1}2λ, and a multi-instance secure
PRG F0,F1 : {0, 1}2λ → {0, 1}λ, a PPRF PPRF(sd, salt) = PPRF(sd, salt, 2D) over input
domain {0, 1}D (later identified with [2D]) is recursively defined in a tree-based manner as
follows:

• The first layer includes two nodes X0 := F0(sd, salt0), X1 := F1(sd, salt1).

• Each layer of the tree is constructed from the nodes of the previous layer similarly, as
follows:

PPRFsd(salt, i) = FiD (PPRFsd (salt, i1, . . . , iD−1) , salt)

= FiD

(
FiD−1

(. . . (Fi1(sd, salt) , salt) , salt
)
,

where i1, · · · , iD denote the bits of i.

As in the standard GGM construction, a punctured key at i is the co-path to i in the tree,
i.e., the set of intermediate nodes that can be used to recover all leaves except the i-th
one:CoPathsd(salt, i) = PPRFsd

(
salt, i1,...,j̄

)
j=1,...,D

. The formal construction is presented
in Protocol 12.
As in the standard GGM construction, a punctured key at i corresponds to the co-path to
i in the tree, i.e., the set of intermediate nodes that allow the recovery of all leaves except
the i-th one: CoPathsd(salt, i) = PPRFsd

(
salt, i1,...,j̄

)
j=1,...,D

. The formal construction is
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presented in Protocol 12, and the proof of security is provided in Theorem 6.2.1. The proof
is a natural extension of the security analysis of the GGM construction [GGM86].

New PPRF

Parameters:

• Two functions F0,F1 : {0, 1}2λ → {0, 1}λ. Number of leaves n = 2D ∈ N.

Construction:

• Sample (sd, salt)←$ {0, 1}3λ where salt := (salt0, salt1)where salt0, salt1 are used for
F0,F1 respectively. For simplicity, Fi(sd, salti) is written as Fi(sd, salt) for i ∈ {0, 1}.

• Let X0 := F0(sd, salt0), X1 := F1(sd, salt1).

• For i ∈ [2, D], define Xb1,...,bi−1,0 = F0(Fbi−1
(Xb1,...,bi−1

), salt0), Xb1,...,bi−1,1 =

F1(Fbi−1
(Xb1,...,bi−1

), salt1) where bj ∈ {0, 1} for all j ∈ [1, i− 1].

• The formula is generalized to compute the leaf of the tree as follows:

For each i ∈ [0, n− 1], bit-decompose i as
∑D

j=1 2
j−1 · ij for ij ∈ {0, 1} then:

Xi = Xi1,...,iD = FiD(FiD−1(Xi1,...,iD−1), saltiD)

= FiD(FiD−1(. . . (Fi1(sdi1 , salti1), saltiD−1), saltiD)

To formalize, the value for each leaf i ∈ [0, n− 1] is denoted as:

PPRFsd(salt, i) = FiD (PPRFsd (salt, i1,...,D−1) , salt)

= FiD
(
FiD−1 (. . . (Fi1(sd, salt) , salt) , salt

)
where i1,...,k =

∑k
j=1 2

k−j i̇j for any k ∈ [1, D].

• The co-path CoPath(i) for each i =
∑D

j=1 2
j−1 · ij ∈ [0, n− 1] is defined as follows:

CoPath(i) = CoPath(Xi1,...,iD) = {Xī1 , Xi1 ,̄i2 , . . . , Xi1,...,̄iD
}

Formalizing, then:

CoPathsd(salt, i) = PPRFsd
(
salt, i1,...,j̄

)
j=1,...,D

where i1,...,k̄ =
∑k−1

j=1 2
k−j .ij + īk for any k ∈ [1, D].

Protocol 12: New construction PPRF(sd, salt, 2D) of Puncturable PRF
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Aalysis of the construction in the ideal cipher model

Theorem 6.2.1 (PPRF security). Assume thatPRG = (F0,F1)with Fb : {0, 1}2λ → {0, 1}λ is
an (N, τ)-instance (t, ϵ)-secure length-doubling PRG. Then the construction PPRF(sd, salt, 2D)

described in 12 is an (N, τ)-instance strongly (t,D · ϵ)-secure PPRF with input domain [2D]

and punctured key domain ({0, 1}λ)D.

Proof. The proof proceeds through a sequence of hybrids, each relying on the (N, τ)-instance
security of F0,F1. For each leaf i(j,e) ∈ {0, 1}D in each tree PPRF(sdj,e, saltj, 2D), the value
assigned to this leaf i(j,e) is denotedX

i
(j,e)
1 ,...,i(j,e)D

. The secret path from the root (sdj, e, saltj)
to the leaf i(j,e) is the tuple of intermediate nodes {X

i
(j,e)
1

, X
i
(j,e)
1 ,i

(j,e)
2

, . . . , X
i
(j,e)
1 ,...,i

(j,e)
D
}.

Experiment 0 (Exp0). All trees of the N instances are generated through the scheme
described in Protocol 12, which is executed at each level to produce the leaves of the next
level. Specifically, for each j ≤ N, e ≤ τ , the construction of the (j, e)-th tree begins with a
random master (sdj,e, saltj) and uses F0 and F1 across all 2D levels to generate the right and
left children.
Experiment 1 (Exp1). This experiment is identical to the previous one except for the first
level of each tree. For all j = 1, . . . , N, e ≤ τ , the leaves at the first level (X1(j,e) , X0(j,e))

are not generated using F0,F1 but are instead randomly sampled. Since F0,F1 is an (N, τ)-
instance (t, ϵ)-secure PRG, the following holds:

|Pr[Exp0(λ) = 1]− Pr[Exp1(λ) = 1]| ≤ ϵ(λ)

Experiment 2 (Exp2). The difference from the previous experiment lies in the second level
of each tree: all the leaves (X

i
(j,e)
1 ,0

, X
i
(j,e)
1 ,1

) previously computed using F0 and F1 are now
randomly chosen for each j = 1, . . . , N, e ≤ τ . Using the secure property of F0 and F1, the
following holds:

|Pr[Exp1(λ) = 1]− Pr[Exp2(λ) = 1]| ≤ ϵ(λ)

As can be deduced, traversing along the secret path of each tree, the mechanism of replacing
the two leaves (X

i
(j,e)
1 ,...,i

(j,e)
k−1 ,0

, X
i
(j,e)
1 ,...,i

(j,e)
k−1 ,1

) at each level k ∈ [1, D] by uniformly random
values can continue through the entire depth D of the tree. This process results in D

experiments, and applying the same hypothesis about the security of F0 and F1, the following
is obtained:

|Pr[Expi−1(λ) = 1]− Pr[Expi(λ) = 1]| ≤ ϵ(λ)

for all i = 1, . . . , D. Furthermore, during this traversal, all values on the co-path to the
leaves i(j,e) are simultaneously replaced by uniformly random values.
Experiment D (ExpD). In the final experiment, all nodes on the co-path to i(j,e) as well
as the leaf i(j,e) are chosen uniformly at random for j = 1 to N and e = 1 to τ . The final
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bound, which concludes the proof, is:

|Pr[Exp0(λ) = 1]− Pr[ExpD(λ) = 1]| ≤ D · ϵ(λ),

The crux of the analysis is now to demonstrate that the PRG is (N, τ)-instance (t, ε)-secure
for a suitable choice of N, τ, t, ε. Since the PRG explicitly uses a block cipher, reliance on
the random permutation model is no longer feasible. Instead, security is proven in the ideal
cipher model, where each key K ∈ {0, 1}λ defines a truly random permutation πK , and all
parties are given oracle access to πK and π−1K for all K . The attacker’s running time t is
measured as its number of queries q to the oracles. Using Patarin’s H-coefficient technique,
it is formally proven that the construction is an (N, τ)-instance (q, ε)-secure PRG for any
N up to 2λ−1, with ε ≤ 4τ ·λ

lnλ
· q
2λ
, where the term 4τλ/ lnλ can be replaced by 8τ when

N ≤ 2λ/2. The analysis is non-trivial, with the bound derived from a careful study of the
influence of collisions among seeds on the adversarial advantage. The number of such
collisions is bounded using standard lemmas on the maximum load of a bin when 2N balls
are thrown into 2λ bins.

6.2.3 A Multi-Instance PRG in the Ideal Cipher Model
In this section, the construction of a multi-instance PRG in the ideal cipher model is described.
The construction itself is not entirely new but is a tweak on a construction of [GKW+20].
The work of [GKW+20] provides a construction of PPRF in the random permutation model,
obtained by applying the GGM reduction to the following "Davies-Meyer" construction of a
length-doubling PRG G : x → (π0(x) ⊕ x, π1(x) ⊕ x), where (π0, π1) are pseudorandom
permutations. The PRG is proven secure in the randompermutationmodel (in the analysis, all
parties are given oracle access to π0, π1, and their inverses). A simple yet effective observation
is that the most efficient instantiation of this construction implements the permutations
π0, π1 by fixing two keys (K0, K1) and defining πb := EKB

, whereEKB
is a block cipher (such

as AES). This leads to the following idea: instead of fixing the keys (K0, K1), sample them
randomly and use them as a salt for the PRG in the multi-instance setting. The candidate
multi-instance PRG becomes G = (F0,F1) : (x, salt)→ (Esalt0(x)⊕ x,Esalt1(x)⊕ x). The
formal construction is given in Figure 6.1. While the high-level intuition is straightforward,
the formal analysis is considerably more involved. The remainder of this section is devoted
to a formal proof that the above construction is an (N, τ)-instance (t, ε)-secure PRG, for
parameters (N, τ, t, ε) specified later. The proof is in the ideal cipher model: in this model,
each key K ∈ {0, 1}λ defines an independent uniformly random permutation πK . All
parties have access to an oracle which, on input (0, K, x), outputs πK(x), and on input
(1, K, y), outputs π−1K (y).

Definition 6.2.4 (Ideal Cipher Oracle). For every K ∈ {0, 1}λ, let πK : {0, 1}λ → {0, 1}λ
be a uniformly random permutation over {0, 1}λ. The ideal cipher oracle Oπ is defined as

follows:
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- On input (x,K) ∈ {0, 1}λ × {0, 1}λ, outputs πK(x).

- On input (inv, x,K), outputs π−1K (x).

Parameters:

• For each K ∈ {0, 1}λ, πK : {0, 1}λ → {0, 1}λ is a uniformly random
permutation.

Construction:

• Sample salt←$ {0, 1}2λ. Parse salt := (K0, K1).

• Fb : {0, 1}2λ → {0, 1}λ is defined as Fb(sd, saltb) = πKb
(sd) ⊕ sd for b ∈

{0, 1} and sd ∈ {0, 1}λ.

Figure 6.1: Multi-instance PRG F0,F1 in the ideal cipher model

Theorem 6.2.2. Let F0,F1 be the functions defined in Figure 6.1. Let q be the number of

queries to the oracle Oπ. Then (F0,F1) is an (N, τ)-instance (q, ϵ)-secure PRG in the ideal

cipher model (where the parties are given oracle access to Oπ from Definition 6.2.4), where

ε ≤ fN(λ) · q ·
(

1

2λ−1
+

1

2λ − q

)
+

4τN

22λ
,

for some function fN such that ifN ≤ 2λ−1, fN(λ) ≤ 3τλ·ln 2
lnλ+ln ln 2

, and ifN ≤ 2λ/2, fN(λ) ≤ 4τ .

Proof. Fix a number of instances N and a number of repetitions τ . A distinguisher D is
considered that receives (salti, (yi,e)e≤τ )i≤2N according to either the real world experiment
Exprw-prgD or the ideal world experiment Expiw-prgD of Definition 6.2.3, interacts with the ideal
cipher oracle Oπ , and outputs a guess b. Let q be a bound on the number of queries of D to
Oπ. To simplify the discussion, it is assumed that the N · τ seeds (sd(1,e), · · · , sd(N,e))e≤τ
are also sampled (but not used) in the experiment Expiw-prgD . The notation salti is written as
(Ki

0, K
i
1).

Reformulating the experiment. Now, sample (sd(1,e), · · · , sd(N,e))e≤τ and pairs of keys
(Ki

0, K
i
1)i≤N . If N · τ is large, with a high probability there will be some collisions among

the seeds. Let M ≤ N · τ denote the number of distinct seeds. To simplify the analysis, the
seeds and the keys are reordered and renamed as follows:

• sd1, . . . , sdM are the M distinct seeds from the set of N · τ sampled seeds sd(j,e). For
each seed sdi, define Si ⊆ {0, 1}λ to be the set of indices such that K ∈ Si if there is
an index (j, e) such that sd(j,e) = sdi and either K = Kj

0 or K = Kj
1 (that is, sdi was
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sampled at least once together with a salt that contains K). Note that Si corresponds
to all keys K such that πK is queried on sdi in Exprw-prgD .

• For each πK , define S ′K := {i : K ∈ Si} ⊆ [M ] to be the set of indices of seeds that
will be queried to πK .

With the above notations, the distinguisher D receives the sets S1, · · · , SM , and for each
i ≤M , it gets either πK(sdi)⊕ sdi for allK ∈ Si (experiment Exprw-prgD ), or a set of random
values (yK,i)K∈Si

(experiment ExpiwD ). These alternative experiments only differ from the
original experiments if it happens that two seeds sd(i,e), sd(j,f) collide, and two of their keys
(Ki

0, K
i
1) and (Kj

0 , K
j
1) also collide: in this case, the original experiments would return

distinct values y in the ideal world, but identical values in the real world, making them
trivially distinguishable. However, the probability of this even happening is very small:

Pr[∃(i, e) ̸= (j, f), sd(i,e) = sd(j,f) ∧ ∃(bi, bj) ∈ {0, 1}2, Ki
bi
= Kj

bj
] ≤ 4N · τ

22λ
.

Condition on this event not happening, the new experiments become perfectly equivalent to
the original experiments. A flag is therefore raised if the above condition occurs, the process
aborts if a flag is raised, and the focus shifts to bounding the distinguishing advantage in
these new experiments.

Bounding the size of S ′K . The maximum size of S ′K for any K is now bounded. A
standard lemma on the maximum load of a bin when tossing m balls into n bins is needed:

Lemma 6.2.1 (balls-and-bins). Consider tossing m balls into n bins. For m ≤ n, denoting

max_load as the maximum number of balls that end up in any single bin, we have

Pr

[
max_load ≥ 3 lnn

ln lnn

]
≤ 1

n
.

By definition, the maximum size of S ′K is reached for the permutation πK that is invoked
on the largest number of distinct seeds. A tight upper bound on this number follows from
a simple balls-and-bins analysis: each time τ new seeds (sd(i,e))e≤τ are sampled, two keys
(Ki

0, K
i
1) are sampled, which can be viewed as throwing two balls to two random bins,

sampled randomly from 2λ possible bins. After N steps of this experiment (hence after
throwing 2N balls at random), denotingmax_load the maximum load of any bin, τ ·max_load
is an upper bound on maxK |S ′K |.3 We get:

3This is a very tight upper bound: because |S′
K | counts only distinct seeds, it overcounts whenever it

happens that a new seed sd(j,e) is sampled that collides with one of the previous seeds (sd(jne) = sd(i,f) for
some i < j) and Kj

0 or Kj
1 also collides with one of the two keys (Ki

0,K
i
1). However, the chance that this

happens is at most τ ·N/22λ.
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Claim 6.2.1. Whenever 2N ≤ 2λ, the maximum load maxK |S ′K | is bounded by 3τ ·ln 2λ

ln ln 2λ
with

probability 1− 2−λ. Furthermore, if 2N ≤ 2λ/2,maxK |S ′K | is bounded by 4τ with probability

1− 2−λ.

The first part of the claim follows directly from the balls-and-bins lemma 6.2.1. The last part
of the claim follows from the fact that when 2N ≤ 2λ/2, the probability of having 4 balls in
any given bin is at most 1/22λ, and the claim follows by a union bound over the 2λ bins.

Bounding the advantage of D. The next step focuses on bounding the advantage of D
in distinguishing the real world and the ideal world experiments. Below, the transcript of
the interaction of D in the experiments is formally defined:

Definition 6.2.5 (Transcript). A transcript of D’s interaction is defined as

Q = ((yi,j)i≤M,j∈Si
, Qπ, (sdi)i≤M)

where Qπ = (z, j, πj(z)) records all queries/answers to/from the permutation oracle Oπ

(queries for the inverse of permutation can be considered as (π−1b (z), b, z). Note that (sdi)i≤M
is included to facilitate the analysis but is not available to the distinguisherD: in the real-world,
(sdi)i≤M are used to compute (yi,j)i≤M,j∈Si

, whereas in the ideal-world, (yi,j)i≤M,j∈Si
are

sampled uniformly at random from {0, 1}λ.

A transcript Q is called attainable for some fixed D if there exist some oracles Oπ such that

the interaction of D with those oracles would lead to transcript Q.

In the game of distinguishing between the ideal world and the real world, the distinguishing
advantage is expressed as:

Adv(DOπ ) = |Prrw[DOπ = 1]− Priw[DOπ = 1]|.

The proof relies on Patarin’sH-coefficient technique [Pat09; CS14], summarized below. The
H-coefficient theorem helps in bounding the advantage of the distinguisher by categorizing
the set of attainable transcripts into “good” and “bad” transcripts:

Theorem 6.2.3 (H-coefficient). Fix a distinguisher D. Let T denote the set of attainable

transcripts Q, and let Prrw and Priw represent the probabilities of events in the real and ideal

world, respectively. Let Tbad denote a set of “bad” transcripts, and Tgood = T \ Tbad be the set
of “good” transcripts. Suppose that:

• Priw[Q ∈ Tbad] ≤ ν.

•
∣∣∣Prrw[Q]
Priw[Q]

− 1
∣∣∣ ≤ µ for all Q ∈ Tgood.

Then Adv(DOπ ) ≤ ν + µ.
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One key insight of the H-coefficient technique is that the ratio Prrw[Q]
Priw[Q]

corresponds to the ratio
between the probability that the real-world oracles are consistent withQ and the probability
that the ideal-world oracles are consistent with Q. Denote Pr[RW is consistent with Q] and
Pr[IW is consistent with Q] as Prrw(Q) and Priw(Q), respectively. Then:

∀Q ∈ Tgood,
Prrw[Q]

Priw[Q]
=

Prrw(Q)

Priw(Q)
.

The goal is now to use the H-coefficient theorem to prove Theorem 6.2.2. Define Tbad and
Tgood based on distinct seeds and permutations:

• Tbad contains transcripts Q = ((yi,K)i≤M,K∈Si
, Qπ, (sdi)i≤M) ∈ T such that:

- ∃(sdi, K, ∗) ∈ Qπ with K ∈ Si.

- ∃(∗, K, sdi ⊕ yi,K) with K ∈ Si.

• Tgood = T \ Tbad.

Bounding Priw[Q ∈ Tbad]. Denote |Qπ| = q =
∑

K∈{0,1}λ qK , where qK := |QπK
| :=

|{(∗, K, ∗) ∈ Qπ}| for K ∈ {0, 1}. In the ideal-world, (sdi)i≤M are independent of
((yi,K)i≤M,K∈Si

), and we have:

Priw[Q ∈ Tbad] ≤
∑

K∈{0,1}λ
(Priw[∃(sdi, K, ∗) ∈ Qπ | i ∈ S ′K ]

+ Priw[∃(∗, K, yi,K ⊕ sdi) ∈ Qπ | i ∈ S ′K ])

=
∑

K∈{0,1}λ

2qK · |S ′K |
|2λ|

=
1

2λ−1
·
∑

K∈{0,1}λ
qK · |S ′K |

≤ 1

2λ−1
· q ·max

K
|S ′K |.

Bounding Prrw[Q]/Priw[Q] forQ ∈ Tgood. First, compute the probability Priw(Q) that the
ideal-world oracle is consistent with Q. Denote

(
(sd′i)i≤M , (y′i,K)i≤M,K∈Si

, (πK)K∈{0,1}λ
)

as an arbitrary setting of the ideal world experiment, where (sd′i)i≤M , (yi,K)i≤M,K∈Si
are

sampled as in ExpiwD (λ), and πK : {0, 1}λ → {0, 1}λ are fixed random permutations. Let
π ⊢ Qπ denote the event that the permutation π is consistent with the queries/answers inQπ .
Write (πK)K ⊢ Qπ to indicate that random permutations πK are consistent with all queries
in the transcript Qπ. Since in the ideal world all these values are sampled independently,
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denoting pπ = PrπK
[(πK)K∈{0,1}λ ⊢ Qπ)], we have:

Priw(Q) =

Pr
sd′i,y

′
i,K ,πK

[(sd′i = sdi) ∧ (∀K ∈ Si, yi,K = y′i,K) ∧ ((πK)K∈{0,1}λ ⊢ Qπ)]

= Pr
sd′i

[sd′i = sdi] · Pr
y′i,K

[∀K ∈ Si, yi,K = y′i,K ] · pπ

=

(
1

2λ

)M

·
(

1

2λ

)∑M
i=1 |Si|

·
∏

K∈{0,1}λ

1

(2λ)qK

= 2−λ·
∑

K∈{0,1}λ |S
′
K | ·

∏
K∈{0,1}λ

1

(2λ)qK
· 2−λ·M .

where for 1 ≤ b ≤ a, (a)b := a · (a− 1) · (a− 2) · · · (a− b+ 1). Note that the last equality
comes from the fact that

∑M
i=1 |Si| =

∑
K∈{0,1}λ |S ′K |.

We next compute the probability Prrw(Q) that the real-world oracle is consistent with
Q. Denote ((sd′i)i≤M , (y′i,K)i≤M,K∈Si

, (πK)K∈{0,1}λ) as a setting of the real world. The
main difference is that (y′i,K)i≤M,K∈Si

are now dependent on (sd′i)i≤M . Denoting pπ =

PrπK
[(πK)K∈{0,1}λ ⊢ Qπ)], we have:

Prrw(Q) =

Pr[(sd′i = sdi) ∧ (∀K ∈ Si, yi,K = y′i,K) ∧ ((πK)K∈{0,1}λ ⊢ Qπ)]

= Pr
sd′i

[(sd′i = sdi) ∧ (∀K ∈ Si, yi,K = πK(sdi)⊕ sdi)] · pπ

= Pr
sd′i

[(sd′i = sdi) ∧ (∀i ∈ S ′K , yi,K = πK(sdi)⊕ sdi)] · pπ

= Pr
πK

[
yi,K = πK(sdi)⊕ sdi (πK)K∈{0,1}λ ⊢ Qπ

]
· pπ · Pr

sd′i

[sd′i = sdi]

=
1

2λ·M
·
∏

K∈{0,1}λ

1

(2λ)qK
· Pr
πK

[
yi,K = πK(sdi)⊕ sdi (πK)K∈{0,1}λ ⊢ Qπ

]
.

Since Q ∈ Tgood, then ∄(sdi, K, ∗) ∈ Qπ with K ∈ Si, and ∄(∗, K, sdi ⊕ yi,K) with K ∈ Si.
This leads to:

Pr
πK

[
yi,K = πK(sdi)⊕ sdi (πK)K∈{0,1}λ ⊢ Qπ

]
=

∏
K∈{0,1}λ

Pr
πK

[πK(sdi) = yi,K ⊕ sdi] =
∏

K∈{0,1}λ

1

(2λ − qK)|S′
K |
.
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Putting equations together, we obtain:

Prrw(Q) =
1

2λ·M
·
∏

K∈{0,1}λ

1

(2λ)qK
·
∏

K∈{0,1}λ

1

(2λ − qK)|S′
K |

and eventually:

∀Q ∈ Tgood,
Prrw[Q]

Priw[Q]
=

Prrw(Q)

Priw(Q)
=

∏
K∈{0,1}λ

2λ·
∑

K∈{0,1}λ |S
′
K |

(2λ − qK)|S′
K |

=
∏

K∈{0,1}λ

22N ·λ

(2λ − qK)|S′
K |
.

Distinguishing advantage. Equipped with the above calculations, we can finally bound
the distinguishing advantage of DOπ . To upper bound Adv(DOπ

), we upper bound the ratio
Prrw[Q]
Priw[Q]

, which translates to computing a lower bound on
∏

K∈{0,1}λ(2
λ − qK)|S′

K |. Denote
Kmax ∈ K ∈ {0, 1}λ the index of the set among all {S ′K}K∈{0,1}λ that has maxK |S ′K |
elements. Then we have∏

K∈{0,1}λ
(2λ − qK)|S′

K | ≥
∏

K ̸=Kmax

(2λ)|S
′
K | · (2λ − q)maxK |S′

K |

= (2λ)
∑

K∈{0,1}λ |S
′
K | ·

(2λ − q)maxK |S′
K |

(2λ)maxK |S′
K |

= 22N ·λ ·
(2λ − q)maxK |S′

K |

(2λ)maxK |S′
K |

≥ 22N ·λ ·
(
2λ − q

2λ

)maxK |S′
K |

.

=⇒ Prrw[Q]

Priw[Q]
≤
(

2λ

2λ − q

)maxK |S′
K |

=

(
1 +

q

2λ − q

)maxK |S′
K |

.

The above yields
Prrw[Q]

Priw[Q]
≤ 1 +

q ·maxK |S ′K |
2λ − q

.

Then, using the H-coefficient theorem (Theorem 6.2.3), we get:

Adv(DOπ

) =
1

2λ−1
· q ·max

K
|S ′K |+

q ·maxK |S ′K |
2λ − q

.

Plugging the bound on |S ′K | from the claim finishes the proof.

This result implies that the new multi-instance PPRF construction can serve as a drop-in
replacement for previous (much slower) hash-based constructions, with only a small security
loss of 4τDλ/ lnλ (or 8τD when the number of signature queries is limited to 2λ/2). For
D = 16, τ = 8, and λ = 128, this translates to a security loss of 14 bits for up to 2127
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queries or 10 bits for up to 264 queries. Additionally, this loss can be reduced to 8 bits by
only guaranteeing that the expected runtime of the adversary exceeds 2λ.
An optimization that converts an (N, τ)-instance (t, ε)-secure PRG to a (τ ·N, 1)-instance
(t, ε)-secure PRG by using a pseudorandom generator to sample the τ salts (salti,e)e≤τ for a
given instance from a global salt salti for each i ≤ N can be introduced: this reduces the
security loss by a factor of τ , resulting in a loss of 5 bits for D = 16, τ = 8, and λ = 128.
This tradeoff is considered very reasonable given the benefits of using a significantly faster
AES-based construction. Finally, it is possible to take into account an additional optimization
that reduces the security loss to 3 bits, independently of D, by using a pseudorandom
generator to generate (τ ·D) salts (salti,e)e ≤ τ, i ≤ D from a global salt salt and evaluating
each level of each GGM tree with a distinct salt. In this approach, all salts are randomly
sampled, leading to a negligible probability of collisions among (salti,e, sdi,e)e ≤ τ, i ≤ N . It
is conjectured that this variant can be proven secure with only a 1-bit loss in the ideal cipher
model. Proving this conjecture is expected to require a considerably more intricate direct
analysis of the full multi-instance PPRF in the ideal cipher model, bypassing the reduction
to a multi-instance PRG again.

6.2.4 Application
The new PPRF is expected to find applications beyond MPCitH signatures. As a sample
application, pseudorandom correlation functions [BCG+20a; BCG+22], which are used to
efficiently generate correlated randomness in secure computation, are typically constructed
using a large number of distributed point functions (DPFs). DPFs are very similar to GGM-
style PPRFs, and the analysis is expected to extend almost immediately to multi-instance
DPFs. According to the attack described in Section 6.2, the concrete security of PCFs
using N copies of a DPF with a tree of depth D is 2λ/(N · D). In many scenarios, this
represents a significant security loss. For example, using the PCF of [BCG+22] to generate
230 degree-2 correlations requires N = 6642 copies of a GGM tree of depth log2(2

30/664)2

(a 2-dimensional GGM tree). Under the collision attack, this results in a concrete loss of 27
bits of security. Extending GGM PPRFs to the multi-instance setting using the described
methodology could reduce the security loss to 5 bits without sacrificing efficiency.
The proof technique developed is also expected to improve the parameters of other schemes.
For instance, the recent work [BCS24] leveragesAES in a half-tree construction [GYW+23] to
improve VOLEitH signatures. The scheme in [BCS24] uses a direct construction of a half-tree
based on a circular collision-resistant (CCR) hash function. Due to the security limitation
of CCR hash (to 128-bit blocks and key size) when using an AES-based instantiation, the
size of tree leaves has been extended to 2λ = 256 bits to achieve 128 bits of security. The
techniques developed in the concrete security analysis of the multi-instance PPRF using the
H-coefficient technique are expected to apply to the security proof in [BCS24], potentially
eliminating the need to expand the size of the last layer.
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6.3 The Improved Signature Scheme

This section introduces a new signature scheme based on the regular syndrome decoding
assumption, obtained by improving the previous signature presented in Section 5.4.
Recall that, given H ∈ Fk×K

2 and x ∈ FK
2 as a w-regular vector with block size bs← K/w,

the protocol described in Section 5.4 verifies that x is regular and satisfies H · x = y by
leveraging the MPC-in-the-head paradigm. This reduces to checking:

(1)
∑bs

i=1 xi = 1 mod bs for Zbs-shares of x,

(2) H · x = y for F2-shares of x.

As linear checks are "free" inMPCitH, the problem simplifies to designing a sharing conversion
protocol to transform F2-shares into Zbs-shares. This transformation is made efficient by
leveraging precomputed mod-2 and mod-bs shares of the same random bit. However, the
main efficiency bottleneck of the protocol stems from exactly the use of shares over Zbs:
because of that, the signature includes several (one for each of the τ repetitions of the basic
proof) length-K vectors over Zbs (using a CRT trick, this can be reduced to Zbs/2 whenever
bs/2 is odd and ≥ 3). This yields a O(K · bs) communication cost, which is (by a significant
margin) the dominant cost of the protocol. To mitigate this cost, the block size bs was set to
be the smallest possible value bs = 6 (such that bs/2 = 3). In turn, this forces to rely on RSD
with very high weight w = K/6, which requires significantly increasing the parameters to
compensate for the security loss.
The first observation is that all of these shortcomings can be eliminated at once by relying
on an alternative share conversion approach. Because x is w-regular, it admits a compressed
representation as a list of w integers in [bs], which indicates the position of the nonzero
entry in each of the w unit vectors. Now, observe that if the parties hold shares of w integers
(i1, · · · , iw) modulo bs, these can always be interpreted as representing some regular vector
x; in other words, given such shares, condition (1) is satisfied by default. The crux of the
protocol is a conversion procedure that turns shares of this compressed representation into
shares modulo 2 of the "decompressed" regular vector (with which the parties can check
the linear equation H · x = y for free). Furthermore, this share conversion can again be
implemented very efficiently if the parties are given shares of pairs of the same random unit
vector in compressed representation and in standard representation. Concretely, given an
integer r ∈ [bs], let er denote the length-bs unit vector with a 1 at position r. Assume that
the n parties, holding shares of some i ∈ [bs], are given shares of r modulo bs, and shares of
er over F2. Consider the following simple protocol:

• All parties broadcast their shares of z = i− r mod bs and reconstruct z.

• All parties locally shift cyclically their share of er by z.

After this protocol, all parties end up with shares of the vector er shifted by z, which is
denoted er ↓z (vectors are viewed as columns, hence the shift by z is downward). Observe
that er ↓z = er ↓ (i− r) = (er ↑ r)↓ i = ebs ↓ i = ei. As in Protocol 3, the prover generates
w random pairs (r, er) and shares them between the virtual parties. To dispense with the
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need to check that the pairs were honestly generated, the same strategy is relied upon,
where the verifier samples a random permutation π of [w] and instructs the prover to shuffle
the pairs according to π before using them in the protocol. The high-level structure of the
MPCitH-compiled zero-knowledge proof (without optimizations) is below:

MPCitH-compiled Zero-knowledge Proof of Knowledge

• Parameters and input: let (K, k,w) be parameters for the syndrome decoding prob-
lem, and let bs← K/w. The prover holds aw-regular witness x ∈ [bs]w (in compressed
representation) for the relation H · x = y, where H ∈ Fk×K

2 and y ∈ Fk
2 are public.

Let n be the number of virtual parties.

• Round 1: the prover samples w pairs (ri, eri) where ri ←$ [bs]. These pairs are
denoted (r, er). The prover generates n shares of er (over F2) and of x, r (modulo bs)
distributed between the virtual parties, and commits to the local state of each party.

• Round 2: the verifier samples and sends to the prover a random permutation π ←$

Perm(w). This is written as π(r) (resp. π(er)) for the vector (rπ(1), · · · , rπ(w)) (resp.
(erπ(1)

, · · · , erπ(w)
)).

• Round 3: the prover executes the following protocol:

– All parties reconstruct z = x−π(r) and shift their shares of π(er), getting shares
of π(er)↓z (the shifting is done blockwise: each erπ(i)

is cyclically shifted by zi).
Note that π(er)↓z = ex (i.e. the "uncompressed" representation of the witness
x).

– All parties compute a share of H · (π(er) ↓ z) and broadcast them. All parties
check that the shares reconstruct to y.

• Round 4: the verifier picks i←$ [n] and challenges the prover to open the views of all
parties except i.

• Round 5: the prover sends the n − 1 openings to the verifier, who checks that the
views are consistent with the commitments, with each other, and with the output of
the protocol being y.

The soundness of the scheme is ε = p+ (1/n) · (1− p), where p = p(K, k, w) is an upper
bound on the probability (over the choice of the random permutation π) that a cheating
prover, that commits in the first round to an incorrect witness (i.e. a compressed vector x∗
such that H · ex∗ ̸= y), manages to generate a valid MPC transcript (i.e. finds —possibly
incorrect— pairs (r,u) such that H · (π(u)↓z) = y, where z = x∗ − π(r)). The crux of the
analysis lies in computing a tight evaluation of p.
In the final signature, multiple optimizations are incorporated on top of this basic template,
including the usual optimization of generating the shares in a tree-based fashion using the
GGM puncturable pseudorandom function [KPT+13; BW13; BGI14; GGM86], but also the
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more recent hypercube technique from [AGH+23], and a number of additional optimizations
tailored to the scheme.
In terms of signature size, the dominant cost stems from the size of a share of x and of w
pairs (r, er) (using standard optimizations, all shares except one can be compressed, hence
the communication is dominated by the size of a single share, ignoring for now the number
of repetitions of the identification scheme). The size of a share of x together with w pairs
(r, er) is 2w log bs+K bits4, whereas the size of x (now shared as a vector over FK

2 ) and of
the pairs in 5.2.1 is K · (2 + bs/2) bits. This directly incurs a significant reduction in the
signature size. Furthermore, with this alternative conversion, using a very small block size is
not advantageous anymore, which allows exploration of a much wider range of parameters,
resulting in further savings.

6.3.1 Description of the signature scheme
The key generation algorithm (Protocol 13) randomly samples a syndrome decoding instance
(H, y) with solution x . The signing algorithm with secret key sk = (H, y, x) and message
m ∈ {0, 1}∗ is described in Protocol 14. The verification algorithm with public key pk =
(H, y) (matrix H can be computed from PRG with a random seed, the public key size is
around 0.09kB), messagem ∈ {0, 1}∗, and signature σ, is described in Protocol 15. 5

Key generation algorithm

Inputs: A security parameter λ.

1. Sample sd← {0, 1}λ;

2. Set H ← PRG(sd) with H ∈ Fk×K
2 ;

3. Sample x←$ [bs]w and set y ← H · Expand(x) and sk← (sd, x).

Protocol 13: Key generation algorithm of the new signature scheme

Signing Algorithm

Inputs. A secret key sk and a message m ∈ {0, 1}∗.

Initialization. Parse sk as (sd, x).

• Let H ← PRG(sd) and y ← H · Expand(x); // H ∈ Fk×K
2 is a (pseudo)random

4As in the previous signature, this number is multiplied by a number τ of repetition, but since it is the
same in both works, it is ignored in this discussion for simplicity.

5For readability, the description of the signing and verification algorithms ignores an optimization that
slightly reduces the signature size, but significantly complexifies the description. This optimization, already
presented in 5.2.2.1, leverages the regular structure of x to reduce its side fromK = w·bs tow·(bs−1) = K−w
bits by sharing only the bs − 1 first entries (u1, · · · , ubs−1) of each block of ue, since the last one can be
reconstructed as

⊕
ui ⊕ 1.
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matrix in systematic form.

• Sample (K0,K1)←$ {0, 1}λ × {0, 1}λ. Set salt← (K0,K1).

Phase 1. For each iteration e ∈ [τ ]:

• Sample sde ←$ {0, 1}λ;

• For d = 1 to D, set (Xe
d,0, R

e
d,0, U

e
d,0)← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;

• Set xen ← x, uen ← 0, and re ← 0;

• For i = 1 to n− 1:

1. Compute sdei ← Fsalt(sd
e, i); // Can be computed efficiently by always

storing the path to the current node: to move from i to i+ 1, start from the
closest ancestor of i+ 1 in the path to leave i.

2. Set stateei ← sdei ;
3. (xei , r

e
i , u

e
i , com

e
i ) ← PRG(sdei ); // (xei , rei , uei , come

i ) ∈ [bs]w × [bs]w ×
{0, 1}K × {0, 1}λ.

4. xen ← xen − xei mod bs, uen ← uen ⊕ uei , and re ← re + rei mod bs;
5. For all d ≤ D such that i[d] = 0, set: // i[d] is the d-th bit of the integer i.

– Xe
d,0 ← Xe

d,0 + xei mod bs;
– Re

d,0 ← Re
d,0 + rei mod bs;

– U e
d,0 ← U e

d,0 ⊕ uei ;

• On node n:

1. Compute sden ← Fsalt(sd
e, n);

2. Compute ren ← PRG(sden);
3. re ← re + ren mod bs, ue ← Expand(re), and uen ← uen ⊕ ue; // The (xei )i

form n pseudorandom shares of x ∈ [bs]w, the (rei )i form n pseudorandom
shares of re ∈ [bs]w, and the (uei )i form n pseudorandom shares of ue =

Expand(re) ∈ {0, 1}K .
4. Define auxen ← (xen, u

e
n);

5. Set stateen ← auxen||sden and come
n ← H(stateen).

Phase 2. 1. h1 ← H1(m, salt, com1
1, · · · , com1

N , · · · , comτ
1 , · · · , comτ

N ); // Accumulate
the commitments inside the hash rather than storing and hashing all at once.

2. πe
{e∈τ} ← PRG1(h1). // πe ∈ Perm([w]).

Phase 3. For each iteration e ∈ [τ ]:

1. ze ← x− πe(re) mod bs;

2. For d = 1 to D, set:
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• yed,0 ← H · Shift(πe(U e
d,0), z

e) and yed,1 ← yed,0 ⊕ y;
• zed,0 ← Xe

d − πe(Re
d,0) mod bs and zed,1 ← ze − zed,0 mod bs.

Phase 4. 1. h2 ← H2(m, salt, h1, (y
e
d,b, z

e
d,b)d≤D,b∈{0,1},e≤τ );

2. Set (be1, · · · beD)e≤τ ← PRG2(h2) and let ie ←
∑D

d=1 b
e
d · 2d−1.

Phase 5. Output σ =
(
salt, h1, h2, (CoPathsalt(i

e, sde), ze, come
ie , aux

e
n)e≤τ

)
. // auxen is not

included if ie = n.

Protocol 14: Signing algorithm of the new signature scheme

Verification Algorithm

Inputs. A public key pk = (H, y), a messagem ∈ {0, 1}∗ and a signature σ.

1. Split the signature as follows:

σ =
(
salt, h1, h2, (CoPathsalt(i

e, sde), ze, come
ie , aux

e
n)e≤τ

)
;

2. Recompute πe
{e∈τ} where π

e ∈ Perm([w]) via a pseudorandom generator using
h1;

3. Recompute (be1, · · · beD)e≤τ via a pseudorandom generator using h2 and define
ie ←

∑D
d=1 b

e
d · 2d−1;

4. For each iteration e ∈ [τ ],

• For d = 1 to D:
– Denote b = 1− bed;
– Set (Xe

d,b, R
e
d,b, U

e
d,b)← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;

– For each i ̸= ie:
∗ Recompute sdei from the CoPathsalt(ie, sde);
∗ If i ̸= n, recompute (xei , rei , uei , come

i )← PRG(sdei ); else, parse auxen
as (xen, uen), and compute ren ← PRG(sden);

∗ If i[d] = b, update:
- Xe

d,b ← Xe
d,b + xei mod bs;

- Re
d,b ← Re

d,b + rei mod bs;
- U e

d,b ← U e
d,b ⊕ uei ;

– Recompute (yed,b, zed,b) by simulating the Phase 3 of the signing algo-
rithm as below:
- yed,b ← H · Shift(πe(U e

d,b), z
e);

- zed,b ← Xe
d,b − πe(Re

d,b) mod bs;
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– Recompute (yed,1−b, zed,1−b) as below:
- yed,1−b ← yed,b ⊕ y;
- zed,1−b ← ze − zed,b mod bs;

5. Check if h1 ← H1(m, salt, com1
1, · · · , com1

N , · · · , comτ
1 , · · · , comτ

N );

6. Check if h2 ← H2(m, salt, h1, (y
e
d,b, z

e
d,b)d≤D,b∈{0,1},e≤τ );

7. Output ACCEPT if both conditions are satisfied.

Protocol 15: Verification algorithm of the new signature scheme

Theorem 6.3.1. Assume that PPRF is a (qs, τ)-instance (t, ϵF)-secure PPRF, that PRG is a

(qs, τ)-instance (t, ϵPRG)-secure PRG, and that any adversary running in time t has at advantage

at most ϵSD against the regular syndrome decoding problem. Model the hash functions H1,H2

as random oracles with output of length 2λ-bit and the pseudorandom generator PRG2 as a

random oracle. Then chosen-message adversary against the signature scheme 14, running in

time t, making qs signing queries, and making q1, q2, q3 queries, respectively, to the random

oracles H1,H2 and PRG2, succeeds in outputting a valid forgery with probability

Pr[Forge] ≤ qs (qs + q1 + q2 + q3)

22λ
+ ϵF + εPRG + ϵSD + Pr[X + Y = τ ] + εG +

1

2λ
,

where ϵ = p + 1
N
− p

N
, with p = 4/B and εG = εG(K, k, w,B) is Pr[(H, y) /∈ GOODB],

which is defined on Lemma 6.4.2, X = maxα∈Q1{Xα} and Y = maxβ∈Q2{Yβ} with Xα ∼
Binomial(τ, p) and Yβ ∼ Binomial

(
τ −X, 1

N

)
where Q1 and Q2 are sets of all queries to

oracles H1 and H2.

Computing the bound p from Theorem 6.3.1 requires a dedicated combinatorial analysis,
extensively covered in Section 6.4.1. The proof of Theorem 6.3.1 is deferred to Section 6.4.2.

6.3.2 Parameters selection
In this section, the process of selecting parameters for the new signature scheme is ex-
plained. The first goal is to pick parameters that minimize the number of repetitions τ of the
underlying identification scheme, since this parameter has a large impact on the signature
size. Concretely, as in previous chapter, τ is chosen such that the cost of the forgery attack
on the Fiat-Shamir-compiled signature is at least 2128, where cost is given by the formula
below (which comes from the attack of Kales and Zaverucha [KZ20a]):

cost = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+N τ2

}
. (6.1)

It is observed that setting B = 2−134 in p = 4/B suffices to guarantee that τ is always the
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smallest possible for any given number of leaves n = 2D (i.e. reducing p further does not
reduce τ ). The choice of the number of leaves, 2D, is a tradeoff parameter: larger values of
D yield smaller signature size, at the expense of a larger runtime.

Finding a bound on k. A crucial aspect of the parameter selection process is that the
combinatorial analysis in Section 6.4.1 only guarantees that with very high probability, for
any (u, x∗) ∈ PNB × [bs]w where u is not regular, π(u)↓x∗ will not be a valid solution v
to H · v = y. However, it says nothing about vectors u outside PNB , that is, vectors with
low permutation number pn(u) ≤ B. Therefore, RSD parameters must be selected such
that, with overwhelming probability, there will not be any solution v to H · v = y of the
form v = u↓x∗ for u ∈ FK

2 \ PNB . Since the set X = {v ∈ FK
2 : ∃u ∈ FK

2 \ PNB,∃x∗ ∈
[bs]w,v = u ↓ x∗} is defined, to guarantee that there will not be any solution v ∈ X to
H · v = y, it suffices to pick log2 k ≥ |X| + λ. This follows from a standard “Gilbert-
Varshamov-style” analysis: when sampling a random instance (H, y = H · x) of the RSD
problem, the expected number of solutions in X (beyond x) is

E
H,x

[|{x′ : H · x′ = H · x ∧ x′ ∈ X}|] =
∑
x′ ̸=x
x′∈X

Pr
H,x

[H · x′ = H · x] = |X| − 1

2k
,

and the conclusion is reached with a Markov bound. To choose k, a bound on |X| is used:

Lemma 6.3.1. Let Pi,w denote the set of integer partitions of w in i parts, i.e., the set of all
tuples (k1, · · · , ki) with 0 < k1 ≤ k2 ≤ · · · ≤ ki ≤ w such that

∑i
j=1 kj = w. Let TB denote

the function such that TB(x) = x when x ≤ B, and TB(x) = 0 when x > B. Then

|X| ≤ bsw ·
L∑
i=1

(L
i

)
· i! ·

∑
(k1,··· ,ki)∈Pi,w

TB

(
w!∏i

j=1(kj)!

) ,

where L is (using the Euler totient ϕ and denoting a|b for “a divides b”):

L =
1

bs
·
∑
i≤bs
i odd

∑
d| gcd(bs−i,i)

ϕ(d) ·
(
bs/d

i/d

)
.

Proof. The proof of Lemma 6.3.1 follows from a counting argument, detailed below. The bsw

possible vectors x∗ ∈ [bs]w are enumerated, and all possible u with pn(u) ≥ B are counted.
To count the latter, the process proceeds in steps:

Counting the number of distinct blocks. The number L of possible distinct blocks is
computed. A loose upper bound would be L ≤ 2bs (since a block is a vector in Fbs

2 ). However,
because all possible shifts x∗ of the w blocks are already enumerated, only the number of
distinct blocks up to cyclic shift is counted. In combinatorics, this amounts to counting the
number of length-bs necklaces with two colors. Additionally, because of the optimization
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given in Section 5.2.2.1 where the last entry of each block is fixed such that all entries of a
block XOR to 1, only necklaces with an odd number of ones are enumerated. The formula for
L in Lemma 6.3.1 is a direct application of Pólya’s enumeration theorem [Red27], a classical
theorem on the combinatorics of necklaces.

Counting the number of vectors. For i = 1 to L, the number of vectors which have
exactly i distinct blocks is counted. There are

(
L
i

)
ways to select the i distinct blocks out

of L possible blocks. Since each vector has w blocks in total, all partitions of the integer
w in exactly i parts 0 < k1 ≤ k2 ≤ · · · ≤ ki ≤ w are enumerated, where kj denotes
the number of copies of the j-th block from the selection. Because ordered partitions are
enumerated, the i selected blocks are ordered by number of copies; hence, multiplied by i!

to account for all possible configurations of number of copies (this is a slightly loose upper
bound, since some partitions may have equal numbers kj = kj+1: the right value would be to
multiply by the factorial of the number of distinct integers in (k1, · · · , kj), but this is ignored
for simplicity). Then, having fixed a choice of i specific distinct blocks and the numbers
(k1, · · · , ki) of copies of each block, there arew!/

∏i
j=1(kj)! distinct blockwise permutations

of (this is the standard combinatorial formula for counting multisets). Eventually, since only
vectors whose permutation number is at most B are kept, only in the count are included
the vectors for which w!/

∏i
j=1(kj)! ≤ B (this is the purpose of the threshold function TB

in the formula). This yields the formula stated in Lemma 6.3.1.

Computing |X|. It remains to compute explicitly the formula of Lemma 6.3.1. A Python
script 6 is used to perform the calculation. A small nontriviality is that enumerating over all
integer partitions of w (which is around 120) would be very slow. Fortunately, it is observed
that the condition w!/

∏i
j=1(kj)! ≤ B, together with the bound L on i, impose a sharp

bound on the value of ki: a quick calculation shows that ki ≥ w/2 is needed to be such that(
w
ki

)
≤ B. Given this bound on ki, all remaining possible values of ki are enumerated, and the

number of partitions of w− ki into i− 1 parts is computed to obtain the rest of the partition.
The script used to compute this bound is available at https://github.com/ElianaCarozza/Short-
Signatures-from-Regular-Syndrome-Decoding-in-the-Head/blob/main/script.py.

Finding (K,w). To find the RSD parameters (K, k, w), an iterative process is used: a
choice ofK,w is fixed, and the value of k is computed as |X|+ 128 (note that X depends
on (K,w)), using the script to compute the bound on |X| from Lemma 6.3.1. Then, the
estimator implemented in state-of-the-art cryptanalysis of [ES23] (which improves over
previous cryptanalysis from 5.5 is relied upon to compute (an estimate of) the bit security
of the instance obtained against all known attacks on RSD. If the bit security is below 128,
K is increased by 1 and the process restarts (each time, the parameters for a list of weight
parameters w are also computed, since the impact of w on the proof size is slightly subtle).
Eventually, after settling for a choice of (K, k, w), it is checked that the probability bound
of Lemma 6.4.2 is overwhelming (with the chosen parameters, it is always above 1− 2−200).

6https://github.com/ElianaCarozza/Faster-Signatures-from-MPC-in-the-Head/blob/main/script.py

130



Enhancements via PPRF and Efficient MPC Protocols

6

6.3.2.1 Concrete Parameters and Implementation Outlined below are a few parameter
sets for different values of D ∈ {8, · · · , 17}. For all values of D, the smallest signature size
was achieved by setting K = 1736, k = 960, w = 217, bs = 8.

D τ |σ| signing time verification time
8 16 7.8 kB 0.64 ms 0.56 ms
9 15 7.6 kB 0.88 ms 0.78 ms
10 13 6.8 kB 1.02 ms 0.94 ms
11 12 6.5 kB 1.40 ms 1.32 ms
12 11 6.1 kB 2.13 ms 2.05 ms
13 10 5.7 kB 3.56 ms 3.47 ms
15 9 5.4 kB 13.1 ms 13.0 ms
16 8 4.9 kB 23.9 ms 23.7 ms

Table 6.4: Signature size and signing time for various values of D, using the parameter setK = 1736, k = 960,
w = 217, bs = 8 with the AES-PPRF+ implementation. All timings are computed on one core of an Intel Core i7

processor 14700KF at 3.4 GHz frequency.

The signature scheme was implemented in C with three versions: a version with a tightly
optimized folding (AES-PPRF+), a version with classical folding (AES-PPRF), and a version
with classical folding using SHA instead of AES (on top of a proof-of-concept implementation
with prior parameters, all of those versions provided in the artifact). The results in Table 3
are from the AES-PPRF+ implementation. It should be noted that the implementation did
not use any optimizations such as batching, vectorization, or bit slicing, and an optimized
implementation could likely achieve significantly faster runtime. The AES-NI instruction
set was used to implement the multi-instance PPRF and the multi-instance PRG from
Section 6.2.1. All experiments were run on one core of an Intel Core i7 processor 14700KF at
3.4 GHz frequency. The following optimization flags were used during compilation:
-03 -lm -march=native.
To ensure a fair comparison with SDitH, their benchmarking framework was used to ob-
tain performance results. The overall implementation can be found in the artifacts of the
conference (https://artifacts.iacr.org/).

6.4 Analysis

Although the high-level strategy –shuffling the random pairs– is the same as in the previous
signature, the security analysis is entirely different from the one presented in Section 5.3.3.
Shuffling the prover-generated correlated randomness is a highly non-generic technique,
where each new protocol requires a new and dedicated combinatorial analysis.7 The crux of
the proof lies in bounding the success probability of a cheating adversaryA in the following
game:

7To give a sense of how specific the analysis of Section 5.3.3 was, not only does it work only for the specific
type of pairs: it works exclusively for bs = 6, corresponding to pairs of bits shared modulo 2 and modulo 3.
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• A holds a vector x∗ ∈ [bs]w and chooses r ∈ [bs]w and u ∈ FK
2 , such that u is not a

regular vector.

• A uniformly random permutation π is sampled from Perm(w).

• A wins iff H · (π(u)↓ (x∗ − π(r) mod bs)) = y.

Given a bound on A’s winning probability in this game, the rest of the proof follows in a
relatively standard way and is similar to previous security proofs of code-based signature
schemes in the MPCitH paradigm, such as the one presented in the previous chapter. Above,
note that for any vector s ∈ [bs]w, π(u) ↓ s is a regular vector if and only if u is a regular
vector. Note also that whether x∗ is actually a correct witness or not (i.e. whether H · ex∗)
does not matter: as long as u is regular, if A wins the game above, then an extractor can
recover a valid regular solution π(u)↓ (x∗ + r mod bs) to the syndrome decoding problem
(hence A “knew” a solution to the problem in the first place). Eventually, note that

π(u)↓ (x∗ − π(r) mod bs) = π(u↑r)↓x∗,

hence, the game above simplifies to the following: A chooses x∗ ∈ [bs]w and u ∈ FK
2 \Regw,

and wins iff H · (π(u)↓x∗) = y holds over the choice of a random permutation π.

Eliminating spurious solutions. An immediate issue with the above game is that an
adversarymight win with a very high probability if the system of equationsH ·x = y admits
solutions that are mostly invariant by blockwise permutation. Concretely, assume that there
exists a vector u∗ which satisfiesH ·u∗ = y, and such that u∗ is not a regular vector, yet v∗ is
a concatenation ofw identical vectors from Fbs

2 . If this happens, then there is an easy winning
strategy: A sets u ← u∗ and x∗ ← 0w. Since H · (π(u) ↓ x∗) = H · π(u) = H · u∗ = y,
A is guaranteed to win. More generally, if H · x = y admits a solution u whose blocks
are mostly identical, then the equation H · π(u∗) = y has a relatively large chance to hold
simply because π(u∗) has a relatively large chance to be equal to u∗.

Setting up some notations. Given a vector u, let pn(u) denote |{π(u) | π ∈ Perm([w])}|.
That is, pn(u) is the number of distinct vectors in FK

2 which can be obtained by shuffling
u blockwise; pn(u) is called the permutation number of u. Then, given a bound B, PNB

is defined as {u | pn(u) > B}, the set of vectors with a large permutation number. Let
X denote the set {v ∈ FK

2 : ∃u ∈ FK
2 \ PNB, ∃x∗ ∈ [bs]w,v = u ↓ x∗}. The set

X captures exactly the possible spurious solutions: it contains the vectors v such that
there exists some choice of the shift x∗ such that v ↑ x∗ has a small permutation number
(pn(v ↑ x∗) ≤ B). Denoting Ker(H) ⊕ y the solutions to H · x = y, if there is a vector
v ∈ X ∩ Ker(H) ⊕ y, then A can pick u, x∗ such that v = u ↓ x∗ with pn(u) ≤ B. This
guarantees that with probability at least 1/B, a random permutation π will satisfy π(u) = u,
hence H · (π(u)↓x∗) = H · (u↓x∗) = H · v = y.

Sampling highly-injective instances. Fix some bound B. To eliminate spurious solu-
tions in X , which an adversary could use to win with probability at least 1/B, parameters
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(K, k, w) are chosen such that when sampling the regular syndrome decoding instance
(H, y = H ·x) (for some x ∈ Regw), it holds with probability 1− 1/2λ that the only element
ofX that also belongs to Ker(H)⊕ y is the w-regular solution x. It follows from a standard
analysis that this is the case as soon as log2 k ≥ log2 |X|+ λ.
To select k, a tight upper bound on |X| is computed (see Lemma 6.3.1). Counting the number
of elements of X is not entirely straightforward since the count is performed “up to some
blockwise shift,” but a closed formula can be established using known bounds for counting
k-necklaces (i.e. bitstrings counted up to cyclic shifts) by leveraging Pólya’s enumeration
theorem [Red27]. Given the formula, a short Python program8 is used to compute explicitly
the bound on |X| and select a suitable parameter k (for a fixed choice of K,w).
This also faces some challenges: the formula of Lemma 6.3.1 requires summing binomial
coefficients over all integer partitions of the weight parameter w (i.e., the number of tuples
of distinct positive integers that sum to w). Because w is around 120, its number of integer
partitions is too large to simply enumerate. With some careful consideration, many of these
partitions can be eliminated from the counting procedure, and this observation is leveraged
to reduce the runtime of the program.

Bounding the success probability. The focus is now shifted to the crux of the analysis:
showing that if A picks (u, x∗) where pn(u) > B, then their probability of winning the
game is at most O(1/B) over the choice of the permutation π. What makes the analysis
challenging is that in principle, it could be that some vector u has a high permutation
number, yetmany of its permutations belong to Ker(H)⊕y. The core technical component of
the analysis is a proof that with very high probability over the choice of a random syndrome
decoding instance (H, y), it will simultaneously hold for all vectors u with pn(u) > B that
for any choice of shift x∗, Prπ[H · (π(u) ↓x∗) = y] ≤ 4/B. To state the result formally, a
"good" syndrome decoding instance is defined below:

Definition 6.4.1 (GOODB). Given a bound B, GOODB is defined as the set of syndrome

decoding instances (H, y) ∈ Fk×K
2 × Fk

2 such that for every u ∈ PNB \ Regw and for all

x∗ ∈ [bs]w, Prπ←$Permw [H · (π(u)↓x∗) = y] ≤ 4/B.

The main technical result of the analysis is stated below:

Lemma 6.4.1 (Most syndrome decoding instances are good).

Pr
H,y

[(H, y) ∈ GOODB] > 1−
(
2B

5

)
· 2K+1

B · 23k
·
(
10 +

(K/w)w

2k

)
.

To parse the above, the reader can consider that (K/w)w ≪ 2k will hold the selected
parameters, hence the probability that (H, y) ∈ GOODB is of the order of 1−B4 · 2K−3·k.
For concreteness, the reader can think ofK as being around 1550, k as being around 820, w
being around 200, and B as being around 70, resulting in the above being around 1− 2−630.

8https://github.com/ElianaCarozza/Faster-Signatures-from-MPC-in-the-Head/blob/main/script.py
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Key intuition. The main idea of the proof is outlined as follows. Given a vector u with
pn(u) = N , fix some ordering u(1), · · · ,u(N) of its distinct blockwise permutations, and let
x∗ ∈ [bs]w denote some shift. Sample a random matrixH ←$ Fk×K

2 , a random regular vector
x ←$ Regw, and set y ← H · x. Let (v1, · · · ,vN) ← ((u(1) ↓ x) ⊕ x, · · · , (u(N) ↓ x) ⊕ x)
(note that H · vi = 0 iff H · (u(i) ↓x∗) = y). Observe that the vi are random variables, but
they are set independently of H (since x is sampled independently from H). Then, for any
subset S of t linearly independent vectors vi, it holds that

Pr
H←$Fk×K

2

[H · vi = 0 for all i ∈ S] = 2−k·t.

In other words, whenever the vi’s are linearly independent, the binary random variables Xi

equal to 1 if H · vi = 0 are independent. Building upon this observation, the following is
shown: fix an arbitrary subset S of five indices. Then

• S contains a size-3 linearly independent subset with probability 1, and

• S contains a size-4 linearly independent subset, except with probability at most
10 · (K/w)−w.

Together with the previous bound on the probability thatH ·vi = 0 for linearly independent
vectors, this yields a probability bound of 10 · (K/w)−w/23·k + 1/24·k thatH · vi = 0 for all
i ∈ S. To see why this bound holds, observe that:

• The vi are pairwise distinct and nonzero by construction (because u is assumed to be
nonregular, so π(u)↓x∗ is never 0, and the u(i) are distinct by definition).

• If e.g. (v1,v2,v3) are linearly dependent, they therefore need to satisfy v1⊕v2⊕v3 =
0. But then, v1 ⊕ v2 ⊕ v4 ̸= 0 (otherwise, one would have v3 = v4, contradicting
the fact that the vectors are pairwise distinct). Hence, it is guaranteed to find a size-3
independent subset of vectors in S.

• By the same reasoning, S necessarily contains a 4-tuple of vi’s that does not XOR
to 0, say, (v1, · · · ,v4) (since if both (v1, · · · ,v4) and (v1, · · · ,v3,v5) XOR to 0, then
v4 = v5). Then, either (v1, · · · ,v4) is linearly independent (in which case the process
is complete, since a 4-independent subset is found), or it must contain a size-3 subset
that XORs to 0.

• For any subset of 3 vi’s, the probability that they XOR to 0 is at most (K/w)−w.
This follows from the fact that the vi’s are equal to (a ⊕ x,b ⊕ x, c ⊕ x) for some
fixed vectors (a,b, c), and a uniformly random regular vector x ∈ [bs]w. But then,
v1 ⊕ v2 ⊕ v3 = 0 rewrites to a⊕ b⊕ c = x, which happens with probability at most
bs−w = (K/w)−w over the choice of x.

Since there are 10 size-3 subsets of S, the bound follows. To summarize, a vector u with
pn(u) = N > B and a shift x∗ were fixed, and it was shown that for every size-5 subset S
of [N ], the probability that H · (u(i) ↓x∗) = y holds simultaneously for all i ∈ S is at most
10 · (K/w)−w/23·k + 1/24·k.
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A careful union bound. To finish the proof of Lemma 6.4.1, it remains to compute a
union bound over all possible vectors u, shifts x∗, and size-5 subsets S. However, a quick
calculation shows that a naive union bound does not suffice: first, the number of subsets is(
N
5

)
, but since only N > B, the permutation number of u, is known, it can only be bounded

by w!, which is far too large. Second, the number of vectors u is 2K , which is also too large
for the union bound to yield a nontrivial result.
This issue is overcome by providing a more careful union bound. First, the distinct blockwise
permutations of u, (u(1), · · · ,u(N)), are divided into size-B blocks of vectors. The previous
bound is applied to all size-5 subsets inside each block of vectors, which reduces the factor
resulting from the union bound to (N/B) ·

(
B
5

)
. This suffices to guarantee that in each

size-B block, at most 4 vectors vi can simultaneously satisfyH ·vi = 0, hence guaranteeing
a success probability for A of at most 4/B over the random choice of π. Second, instead
of enumerating over all vectors u, enumeration is performed over all equivalence classes of
vectors u which generate the same list (u(1), · · · ,u(N)). Each equivalence class contains
exactly N vectors, and all equivalence classes are disjoint, saving a factor N this way from
the union bound. Eventually, the union bound is finished by summing over all possible
values of N = pn(u) from B + 1 to w!. This finishes the proof of Lemma 6.4.1.

6.4.1 Combinatorial Analysis
In this section, bounds are provided on the probability that a random regular syndrome
decoding instance (H, y) is bad, in a sense formally defined below. The bounds obtained in
this section form a core component of the security analysis of the scheme in Section 6.4.2.

6.4.1.1 Bounding the Number of Distinct π(u) ↓x Solutions

Let Permw := Perm(w) denote the set of all permutations π : [w] 7→ [w]. Given a vector
u = (u1, · · · ,uw) ∈ FK

2 , where (u1, · · · ,uw) forms a decomposition of u into w blocks
ui ∈ FK/w

2 , π(u) is written to denote the vector (uπ(1), · · · ,uπ(w)). That is, π(u) is the
vector obtained by shuffling the w blocks of u according to the permutation π.
For every u ∈ FK

2 , define pn(u) = |{π(u) | π ∈ Perm([w])}|. That is, pn(u) is the number
of distinct vectors in FK

2 which can be obtained by permuting u blockwise. Given a bound
B, define PNB = {u | pn(u) > B}.

Definition 6.4.2 (GOODB). Given a bound B, GOODB is defined as the set of syndrome

decoding instances (H, y) ∈ Fk×K
2 × Fk

2 such that for every u ∈ PNB \ Regw and for all

x∗ ∈ [bs]w,

Pr
π←$Permw

[H · (π(u)↓x∗) = y] ≤ 4

B
.

In other words, GOODB is the set of syndrome decoding instances (H, y) such that for every

u /∈ Regw with at least B distinct blockwise permutations, at most a fraction 4/B of all

blockwise permutations π(u) are close to being solutions toH · x = y, where π(u) is said to be

“close” to a solution if there exists a suitable cyclic shift of its block π(u)↓x∗ which is a solution.
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Equipped with this definition, the following lemma is established:

Lemma 6.4.2 (Most syndrome decoding instances are good).

Pr
H,y

[(H, y) ∈ GOODB] > 1− εG,

where

εG =

(
2B

5

)
· 2K+1

B · 23k
·
(
10 +

Kw

ww · 2k

)
.

Proof. The proof relies on a small technical lemma, stated below:

Claim 6.4.1. For any integer t ≤ K and every t-tuple of linearly-independent vectors

(v1, · · · ,vt), it holds that

Pr
H←$Fk×K

2

[H · vi = 0 for i = 1 to t] =
1

2k·t
.

Proof. Let V denote the matrix (v1|| · · · ||vt). Write V = V ⊤//V ⊥, where V ⊤ ∈ Ft×t
2

denotes the invertible square matrix formed by the first t rows of V , and V ⊥ denotes the
bottomK− t rows. Given a matrixH , writeH = HL||HR, whereHL denotes the t leftmost
columns of H , and HR its remaining columns. It holds that:

H · V = 0 ⇐⇒ H · [V ⊤//V ⊥] = 0

⇐⇒ H · [Idt//V ⊥ · (V ⊤)−1] · V ⊤ = 0

⇐⇒ (HL · Idt +HR · V ⊥ · (V ⊤)−1) · V ⊤ = 0

⇐⇒ HR · V ⊥ · (V ⊤)−1 = HL.

Therefore, when H is sampled as a uniformly random matrix, Pr[H · V = 0] = Pr[HR ·
V ⊥ · (V ⊤)−1 = HL] = 1/2k·t, since the right-hand side is a uniformly random matrix
HL ←$ Fk×t

2 , sampled independently of the left-hand side. The claim follows.

Now, fix u ∈ PNB \ Regw and x∗ ∈ [bs]w. Let N ← pn(u) and u(1), · · · ,u(N) be the
lexical ordering of all distinct vectors of the form π(u) for some π ∈ Permw. Fix any subset
S = i1, · · · , i5 ⊂ [N ] of five indices. In the following, the probability

p(S) = Pr
H,y

[H · (u(i1) ↓x∗) = y ∧ · · · ∧H · (u(i5) ↓x∗) = y]

will be bounded. Recall that a regular syndrome decoding instance (H, y) is sampled
by picking a uniformly random matrix H ←$ F k×K

2 , a uniformly random regular vector
x←$ Regw, and setting y ← H · x. When making the sampling of x explicit, the probability

136



Enhancements via PPRF and Efficient MPC Protocols

6

p(S) rewrites to

p(S) = Pr
H,x

[H · (u(i1) ↓x∗ ⊕ x) = 0 ∧ · · · ∧H · (u(i5) ↓x∗ ⊕ x) = 0].

Now, write (v1, · · · ,v5)← (u(i1) ↓x∗ ⊕ x, · · · ,u(i5) ↓x∗ ⊕ x), which are random variables
defined over the sampling of x, and let ZS denote the event (defined over the sampling
of both x and H) that H · vi = 0 for i = 1 to 5 (in other words, p(S) = Pr[ZS]). If the
vectors (v1, · · · ,v5) were guaranteed to be linearly independent, it would immediately
follow that p(S) = Pr[ZS] = 1/25k by the previous claim; however, they are not necessarily
independent, and a more fine-grained approach is required. To bound p(S), a few simple
observations are made:

• Since u /∈ Regw, it also holds that for any permutation π and shifts x∗, π(u) ↓x∗ /∈
Regw (since shuffling the blocks and cyclically shifting each block yields an invertible
mapping that preserves regularity). This implies that vj ̸= 0 holds with probability 1

for j = 1 to 5 (since vj = 0 ⇐⇒ u(i1) ↓x∗ = x, and x ∈ Regw).

• Because the u(i) are pairwise distinct (by definition), the vj are pairwise distinct.

Equipped with these observations, let denote ES the event that there exist three integers
α ̸= β ̸= γ ∈ [5] such that vα ⊕ vβ ⊕ vγ = 0. Observe that

Pr[ES] = Pr
x
[∃α ̸= β ̸= γ ∈ [5] : (u(iα) ↓x∗ ⊕ x)⊕ (u(iβ) ↓x∗ ⊕ x)⊕ (u(iγ) ↓x∗ ⊕ x) = 0]

= Pr
x
[∃α ̸= β ̸= γ ∈ [5] : (u(iα) ↓x∗)⊕ (u(iβ) ↓x∗)⊕ (u(iγ) ↓x∗) = x]

≤
∑

α ̸=β ̸=γ

Pr
x
[(u(iα) ↓x∗)⊕ (u(iβ) ↓x∗)⊕ (u(iγ) ↓x∗) = x]

≤
(
5

3

)
·
(
K

w

)−w
= 10 ·

(
K

w

)−w
,

which follows from a union bound over all possible size-3 subsets of [5] and because there
are (K/w)w vectors in Regw, hence a (K/w)−w probability (at most) that a random vector
x←$ Regw is equal to the fixed vector (u(iα) ↓x∗)⊕ (u(iβ) ↓x∗)⊕ (u(iγ) ↓x∗). Now, it holds
that

Pr[ZS] = Pr[ZS | ES] · Pr[ES] + Pr[ZS | ¬ES] · Pr[¬ES]

≤ 10 · (K/w)−w · Pr[Z | ES] + Pr[Z | ¬ES].

Now, bound Pr[ZS; |;ES]. For simplicity and without loss of generality, assume that after
sampling x, v1 ⊕ v2 ⊕ v3 = 0 (this is without loss of generality because the vi’s can always
be reordered after sampling x; note that the event ES is defined only over the sampling of
x). Then, because v4 ̸= v3, it necessarily holds that v1 ⊕ v2 ⊕ v4 ̸= 0. Furthermore, since
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the vi are all pairwise distinct, and all nonzero, this implies that (v1,v2,v4) are linearly
independent. Then, using the claim:

Pr[ZS | ES] ≤ Pr[H · v1 = 0 ∧H · v2 = 0 ∧H · v4 = 0 | ES] =
1

23k
.

Next, bound Pr[ZS; |;¬ES]. By similar reasoning, after sampling x, it necessarily holds
that there is a 4-tuple of the vi’s that does not XOR to 0 (since if all 4-tuples of the vi’s
XOR to 0, then v1 ⊕ v2 ⊕ v3 ⊕ v4 = v1 ⊕ v2 ⊕ v3 ⊕ v5 = 0, which implies v4 = v5,
contradicting the fact that the vi’s are pairwise distinct). Without loss of generality, assume
that (v1,v2,v3,v4) do not XOR to 0. Because the condition ¬ES is applied, it also holds
that no 3-tuple of vectors from (v1,v2,v3,v4) XOR to 0, and because the vi’s are pairwise
distinct (i.e., no two-tuple XOR to 0) and nonzero, it follows that (v1,v2,v3,v4) are linearly
independent. By the previous claim:

Pr[ZS | ¬ES] ≤ Pr[H · v1 = 0 ∧H · v2 = 0 ∧H · v3 = 0 ∧H · v4 = 0 | E] =
1

24k
.

Eventually, it follows that:

p(S) = Pr[ZS] ≤ 10 · (K/w)−w · Pr[ZS | ES] + Pr[ZS | ¬ES]

≤ 1

23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
.

To complete the proof of Lemma 6.4.2, a careful union bound is used. Given u ∈ PNB \Regw
and x∗ ∈ [bs]w, partition the N = pn(u) vectors u(i) ↓x∗ intom ≤ N/B blocks of at most
2B vectors each. Let N1, · · · , Nm denote the m disjoint subsets Ni ⊂ [N ] of size |Ni| ≤ B

corresponding to this partition. First, apply a union bound over all possible blocks Ni, and
all possible size-5 subsets of Ni:

Pr
H,x

[∃i ≤ m,∃Si ⊂ Ni ⊂ [N ] with |Si| = 5 : H · (u(j) ↓x∗ ⊕ x) = 0 for all j ∈ Si]

≤ m ·
(
2B

5

)
· 1

23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
.

This implies that for any fixed u ∈ FK
2 with pn(u) = N , and any fixed x∈[bs]w, there are at

most 4 ·m indices j ∈ [N ] such that H · (u(j) ↓x⊕x) = 0 with high probability (since with
high probability, in each of them blocks, there are at most 4 such indices):
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1−m ·
(
2B

5

)
· 1

23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
< Pr

H,x
[∀i ≤ m,∀Si ⊂ Ni ⊂ [N ] with |Si| = 5 : ∃j ∈ Si, H · (u(j) ↓x∗ ⊕ x) = 0]

= Pr
H,x

[∀i ≤ m : there are at most 4 j ∈ Ni s.t. H · (u(j) ↓x∗ ⊕ x) = 0]

≤ Pr
H,x

[∃ ≤ 4 ·m indices j ∈ [N ] such that H · (u(j) ↓x∗ ⊕ x) = 0 for all j ∈ Si]

= Pr
H,x

[
Pr

π∈Permw

[H · (π(u)↓x∗ ⊕ x) ̸= 0] ≤ 4 ·N/B

N
=

4

B

]
.

Next, a union bound is computed over all possible vectors u with permutation number
pn(u) = N (where N ≤ w!, with equality when all blocks of u are distinct) and all shifts
x∗ ∈ [bs]w. For any N ∈ [w!], let n(N) denote the total number of vectors u ∈ FK

2 with
pn(u) = N (note that

∑
i∈[w!] n(N) = 2K ). All vectors u with pn(u) = N are grouped into

n(N)/N equivalence classes U1, · · · , Un(N)/N , where two vectors u1,u2 belong to the same
equivalence class Ui if and only if there exists π ∈ Permw such that u1 = π(u2) (note that
each equivalence class is of size exactly N by definition of pn, and the Ui form a partition of
the set u ∈ FK

2 ; :; pn(u) = N ). An important observation is that, because any two vectors
u1,u2 that belong to the same equivalence class Ui generate the exact same N -tuple of
distinct permuted vectors (u(1), · · · ,u(N)) (ordered lexically), it suffices to perform the
union bound over all possible equivalence classes (U1, · · · , Un(N)/N), and over all shifts x∗:

Pr
H,x

[
∃i ≤ n(N)/N,∃x∗ ∈ [bs]w, Pr

π∈Permw

[H · (π(u)↓x∗ ⊕ x) = 0] >
4

B

]
≤ n(N)

N
· N
B
·
(
2B

5

)
·
(
K

w

)w

· 1

23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
,

where the vector u in the probability denote any representent of the class Ui. Eventually,
using a union bound over all possible values N ∈ [w!] with N ≥ B:

Pr
H,y

[(H, y) /∈ GOODB]

= Pr
H,x

[
∃N ≥ B ∈ [w!],∃i ≤ n(N)/N,∃x∗ ∈ [bs]w, Pr

π∈Permw

[H · (π(u)↓x∗ ⊕ x) = 0] >
4

B

]
≤
(
2B

5

)
·
(
K

w

)w

· 1

B · 23k
·

(
10 ·

(
K

w

)−w
+

1

2k

)
·

w!∑
N=B

n(N)

<

(
2B

5

)
· 2K+1

B · 23k
·
(
10 +

Kw

ww · 2k

)
,

which concludes the proof of Lemma 6.4.2.
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6.4.2 Security Analysis
In this section, Theorem 6.3.1 is proven.

6.4.2.1 Reducing to EUFKO Security
The following lemma is now proven:

Lemma 6.4.3 (EUFKO =⇒ EUF-CMA).

AdvEUF-CMA
A ≤ AdvEUFKOA +

qs (qs + q1 + q2 + q3)

22λ
+ ϵF + ϵPRG

Proof. Consider an adversaryA against the EUF-CMA property of the signature scheme. To
prove security, a sequence of experiments involvingA is defined, where the first corresponds
to the experiment in which A interacts with the real signature scheme, and the last one is
an experiment in which A uses only random elements independent of the witness.
Game 1 (Gm1). This corresponds to the actual interaction of A with the real signature
scheme. The probability of the event Forge, i.e., the event that A can generate a valid
signature for a message that was not previously queried to the signing oracle, needs to be
bounded.
Game 2 (Gm2). In this step, the game aborts if the sampled salt salt collides with the value
sampled in any of the previous queries to hash functions H1 or H2, or if the input of PRG2

collides with the value obtained in any of the previous queries. The probability difference
can be bounded as

|Pr[Gm1(Forge)]− Pr[Gm2(Forge)]| ≤ qs · (qs + q1 + q2 + q3)

22λ

Game 3 (Gm3). The difference from the previous game is that, before signing a message,
uniformly random values h1, h2, and i∗ are chosen. Since Phase 1, Phase 3, and Phase 5
are computed as before, and the only change is setting the output of H1 as h1, H2 as h2,
and PRG2(h2) as i∗, the difference in forgery probability arises only if a query to H1, H2, or
PRG2 was ever made before, but in this scenario, Game 2 aborts. Thus:

Pr[Gm2(Forge)] = Pr[Gm3(Forge)]

Game 4 (Gm4) In this game, the i∗-th seed sdi∗ and the related co-path CoPathi∗ are sampled
at random. Using all the seeds sdii ̸=i∗ in the CoPathi∗ , all the parties’ views and the auxiliary
material are computed. Phase 1 and Phase 3 are executed in the actual way (i.e., using the
real witness), except for i∗, for which values are obtained randomly instead of using the
F. Distinguishing between this game and the previous one is equivalent to breaking the
multi-instance security of the PPRF:

|Pr[Gm4(Forge)]− Pr[Gm6(Forge)]| ≤ ϵF
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Game 5 (Gm5). Before signing a message, a uniformly random value is chosen to be used
as the i∗-th party’s view, i.e., (xi∗ , ri∗ , ui∗), and its commitment comi∗ . Since in the previous
game, these values were computed using a multi-instance PRG on a random sd, with salt
salt, the following bound holds:

|Pr[Gm4(Forge)]− Pr[Gm6(Forge)]| ≤ ϵPRG

Game 6 (Gm6) In this game, Phase 1 and Phase 3 are changed by having the signer use the
internal HVZK simulator described in Protocol below 16.

HVZK simulator

Step 1: (Sample Challenge).

1. Sample CH1 = π ∈ Perm([w]) and CH2 = i∗ ∈ [n] and salt ∈ {0, 1}2λ.

Step 2: (Sample Leaf Party States).

1. Sample (xi∗ , ri∗ , ui∗ , comi∗)←$ [bs]w × [bs]w × {0, 1}K × {0, 1}λ;

2. Sample the CoPathi∗ at random;

3. Sample aux←$ [bs]w × {0, 1}K .

Step 3: (Generate Leaf Party Commitments).

1. For i ̸= i∗:

• If i ̸= n:

– Expand the leaf party into shares (xi, ri, ui) and commitment comi by using
a PRG on sdi;

• If i = n:

– Set staten = sdn||aux and compute comn = H(staten);
– Recompute rn s.t. u = Expand(r) where u =

∑n
i=1 ui and r =

∑n
i=1 ri.

2. Compute COM = H1 (m, salt, com1, . . . , comn).

Step 4: (Generate party communication).

1. Sample z ∈ [bs]w at random;

2. For d = 1 to D:

• Set (Xd,0, Rd,0, Ud,0)← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;

• Compute

– Xd,0 ← Xd,0 + xi mod bs;
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– Rd,0 ← Rd,0 + ri mod bs;
– Ud,0 ← Ud,0 ⊕ ui;
– yd,0 ← H · Shift(π(Ud,0), z);
– yd,1 ← yd,0 ⊕ y;
– zd,0 ← Xd − π(Rd,0) mod bs;
– zd,1 ← zd,0 − z mod bs.

Step 5: (Output transcript).

1. RSP1 = H2

(
m, salt,COM, (yd,b, zd,b)d≤D,b∈{0,1}

)
;

2. Program PRG2 as a ROM s.t. PRG2(RSP1) = CH2;

3. RSP2 = comi∗ ,CoPathi∗ , auxn.

Output (COM,RSP1,RSP2).

Protocol 16: Internal HVZK simulator for signing algorithm

Looking in detail, the only change between this game and the previous one is that the
auxiliary material aux is now selected as random. Since in the previous game, aux was
computed using all real values except one (randomly chosen and never made public), there
is no substantial difference between this game and the previous one. Therefore,

Pr[Gm5(Forge)] = Pr[Gm6(Forge)]

Game 7 (Gm7). An execution e∗ of a query

h2 = H2(m, salt, h1, (y
e
d,b, z

e
d,b)d≤D,b∈{0,1},e≤τ )

is said to define a correct witness if the following criteria are satisfied:

• h1 was output by a previous query

h1 ← H1(m, salt, com1
1, · · · , com1

N , · · · , comτ
1, · · · , comτ

N);

• each come∗
i in this query was output by a previous query

come∗

i = PRG(sde
∗
, i)

for each i ∈ [N ];

• The vector x defined by the leaf party states {statei}i∈ND satisfies HW(x) = w and
Hx = y.
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In this game, for each query ofH2 made by the adversary, a check is performed to determine
if there is an execution e∗ that defines a correct witness. Calling this event Solve of course,
since if it occurs then the states {statee∗i } define a solution for the RSD, the probability
Pr[Solve ≤ ϵSD].

6.4.2.2 EUFKO Security
The following lemma is proven:

Lemma 6.4.4 (EUFKO security).

AdvEUFKOA ≤ εSD + Pr[X + Y = τ ] + εG +
1

2λ
.

Together with Lemma 6.4.3, this completes the proof of Theorem 6.3.1. To prove EUFKO
security of the signature scheme, the soundness of the underlying identification scheme is
first analyzed, and then the standard reduction to EUFKO security is applied after compiling
the scheme with the Fiat-Shamir transform. Concretely, the signature scheme is obtained
by applying the Fiat-Shamir transform to the τ -fold parallel repetition of the identification
scheme defined in Protocol 17.

Five-round Identification Scheme

1. Parse the secret key sk as (sd, x);

2. Let H ← PRG(sd) and y ← H · Expand(x);

3. Sample (K0,K1)←$ {0, 1}λ × {0, 1}λ. Set salt← (K0,K1).

Round 1: (Prover to Verifier).

1. Sample sd←$ {0, 1}λ;

2. For d = 1 to D:

• Set (Xd,0, Rd,0, Ud,0)← (0, 0, 0) ∈ [bs]w × [bs]w × {0, 1}K ;

• Set xn ← x, un ← 0, and r ← 0.

3. For i = 1 to n− 1:

• Compute sdi ← Fsalt(sd, i);
Set statei ← sdi and (xi, ri, ui, comi)← PRG(sdi);

• Set xn ← xn − xi mod bs, uen ← un ⊕ ui, and r ← r + ri mod bs;

• For all d ≤ D such that i[d] = 0:
Set Xd,0 ← Xd,0 + xi mod bs, Rd,0 ← Rd,0 + ri mod bs,
and Ud,0 ← Ud,0 ⊕ ui.

143



Chapter 6 Enhancements via PPRF and Efficient MPC Protocols

6

4. On node n:

• Compute sdn ← Fsalt(sd, n), rn ← PRG(sdn), and set r ← r + rn mod bs,
u← Expand(r), and un ← un ⊕ u;

• Define auxn ← (xn, un) and set staten ← auxn||sdn and comn ← H(staten);

• Compute and send h1 ← H1(salt, com1, · · · , comN ).

Round 2: (Verifier to Prover).

1. Send π ←$ Perm([w]).

Round 3: (Prover to Verifier).

1. Set z ← x− π(r) mod bs;

2. For d = 1 to D:

• Set yd,0 ← H ·Shift(π(Ud,0), z), yd,1 ← yd,0⊕y, zd,0 ← Xd−π(Rd,0) mod bs,
and zd,1 ← zd,0 − z mod bs;

• Compute and send h2 ← H2(salt, h1, (yd,b, zd,b)d≤D,b∈{0,1}).

Round 4: (Verifier to prover).

1. Send (b1, · · · bD)←$ {0, 1}D . Let i←
∑D

d=1 bd · 2d−1.

Round 5: (Prover to Verifier).

1. Send (salt, z, (CoPathsalt(i, sd), comi, auxn)) .

Protocol 17: A five-round identification scheme with secret key sk = (sd, x) for the relation y = H · x with

y ∈ Regw and H = PRG(sd). The scheme has soundness ε = p+ (1− p)/n.

6.4.2.3 Soundness of the identification scheme. The core of the analysis is dedicated to
showing that from any cheating prover, a weakly valid witness can be extracted. Concretely,
a weakly valid witness is a pair (v, x∗) where v is a solution to H · v = y which might not
be regular, but satisfies pn(v ↓x∗) ≤ B. In other words, this means that v contains mostly
identical blocks “up to shift”. Note that a regular vector contains only copies of the unit
vector e1 “up to shift”, hence this generalizes the class of regular vectors in a specific sense.
Formally:

Definition 6.4.3. A weakly valid witness to a syndrome decoding instance (H, y) is a pair

(v, x∗) such that H · v = y and v ∈ X , where X is defined as:

X = {v ∈ FK
2 : ∃u ∈ FK

2 \ PNB,∃x∗ ∈ [bs]w,v = u↓x∗}.

Additionally, the second term x∗ of the pair is a shift that satisfies v ↓x∗ ∈ FK
2 \ PNB .
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Lemma 6.4.5 (Soundness of the identification scheme in Protocol 17). Assume that H1,H2

are collision-resistant hash functions, that the mapping PRG(sd)1..λ ( i.e. the first λ bits of the

output of PRG on an input sd) is computationally binding, and that the PRG used during the

key generation inH ← PRG(sd) is modeled as a random oracle (hence PRG(sd) selects a truly

random matrix H). Then with probability at least 1− 1/2λ − εG over the random choice of

the RSD instance (H, y), there exists an expected polynomial time extractor algorithm which,

given rewinding access to a prover P̃ which generates an accepting proof with probability at

least ε̃ > p+ 1/n− p/n, extracts a weakly valid witness x for the relation H · x = y.

Looking ahead, the soundness proof does not prevent a cheating prover from producing
a weakly valid witness that is not a true regular witness. This is guaranteed by the fact
that, with probability 1− 1/2λ over the choice of a random instance (H, y), the system of
equationsH ·v = y does not have any solution inX beyond the regular solution. This holds
for a suitable choice of the parameters (K, k, w), which is detailed in Section 6.3.2. The term
1/2λ in the bound of Lemma 6.4.4 reflects the probability that (H, y) admits weakly valid
solutions that are not regular.

Proof. Let P̃ be a prover that succeeds in generating an accepting proof with probability
ε̃ > ε. An extractor is exhibited, which finds a witness x such that H · x = y, where x is
guaranteed to be a weakly valid witness (see Definition 6.4.3). Let R denote the randomness
used by P̃ to generate the commitment h in the first round, and by R∗ a possible realization
of R. Let SuccP̃ denote the event that P̃ succeeds in convincing V. By hypothesis

Pr[SuccP̃] = ε̃ > ε = p+
1

N
− p

N
.

Fix an arbitrary value α ∈ {0, 1} such that (1 − α)ε̃ > ε, which exists since ε̃ > ε. A
realization R∗ of the prover randomness for the first flow is said to be good if it holds that

Pr[SuccP̃|R = R∗] ≥ (1− α)ε̃.

Furthermore, by the Splitting Lemma (see e.g. [FJR22]), it follows thatPr[R good|SuccP̃] ≥ α.
Assume now that T0 is the transcript of a successful execution of the zero-knowledge proof
with P̃. Let R∗ denote the random coin used by P̃ in the first round, and let i0 denote the
Round 4 message of the verifier. If R∗ is good, then

Pr[SuccP̃|R = R∗] ≥ (1− α)ε̃ > ε >
1

N
,

which implies that there necessarily exists a second successful transcript T1 with a different
Round 4 message i1 ̸= i0.
Consistency of (T0, T1). Let (π0, i0) and (π1, i1) be the verifier challenges in the successful
transcripts T0 and T1 respectively, with i0 ̸= i1. Let (state0i ̸=i0

, com0
i0
) and

(
state1i ̸=i1

, com1
i1

)
denote the states (recomputed from the co-path included in the transcript) and the commit-
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ment in the transcripts T0 and T1 respectively. Suppose that ∃i ∈ [N ] \ {i0, i1} such that
state0i ̸= state1i . Then there are two possibilities:

• The commitments are different:

comi = PRG(statei)1..λ ̸= PRG(state′i)1..λ = com′i.

But since T0 and T1 are accepting transcripts, this implies in particular that h =

H1(com1, · · · , comN) and h = H1(com
′
1, · · · , com′N) which contradicts the collision

resistance of H1.

• The commitments are equal:

comi = PRG(statei)1..λ = PRG(state′i)1..λ = com′i.

This directly contradicts the binding property of PRG.

Therefore, it necessarily holds that the states are mutually consistent (that is state0i ̸=i0,i1
=

state1i ̸=i0,i1
. Since i0 ̸= i1), they jointly define a unique tuple (statei)i∈[N ], from which it is

possible to recompute x =
∑

i xi mod bs, u =
⊕

i ui, and r =
∑

i ri mod bs. Let denote
v ← u↑ r.

Claim 6.4.2. The vector v belongs to FK
2 \ PNB .

To prove the claim, it is shown that if v ∈ PNB , then Pr[SuccP̃|R = R∗] ≤ ε, contradicting
the assumption that R∗ is good. Let BadPerm = BadPermv,x denote the event (defined
over the random choice of a permutation π, and for the fixed value of (v, x,H, y)) that
y = H · (π(v)↓x). Let εG denote the bound of Lemma 6.4.2.
By Lemma 6.4.2, it holds with probability 1 − εG over the random choice of H that
Pr[BadPerm] ≤ p with p = 4/B (here, the fact that in the random oracle model,
H = PRG(sd) is uniformly random is used). Now,

Pr[SuccP̃|R = R∗] = Pr[SuccP̃ ∧ BadPerm|R = R∗] + Pr[SuccP̃ ∧ ¬BadPerm|R = R∗]

≤ p+ (1− p) · Pr[SuccP̃|R = R∗ ∧ ¬BadPerm].

The probability Pr[SuccP̃|R = R∗ ∧ ¬BadPerm] is now bounded. Assume for the sake of
contradiction that Pr[SuccP̃|R = R∗ ∧ ¬BadPerm] > 1/n. This implies that given any
successful transcript T ′0 with fourth-round i′0, there necessarily exists a second successful
transcript T ′1 with the same first three rounds and a different fourth-round i′1 ̸= i′0. Fix two
such transcripts (T ′0, T ′1), and let π′ denote the (common) permutation sent in Round 2 of
these transcripts.
By the same argument as before, T ′0 and T ′1 are necessarily consistent, and uniquely define a
tuple (state′i)i∈[N ]. Furthermore, since the condition on R = R∗ implies that the first flow
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h′1 is the same as the first flow h1 in T0, T1, it must holds that (state′i)i∈[N ] = (statei)i∈[N ],
the states uniquely defined by (T0, T1) (otherwise, this would contradict either either the
collision-resistance of H or the binding of PRG, as already shown).
Let d ≤ D be a position such that i′0[d] ̸= i′1[d]. Without loss of generality (since the
roles of T ′0 and T ′1 can always be swapped), it is safe to assume that i′0[d] = 0 and i′1[d] = 1.
Reconstruct the values (y(0)b,d , z

(0)
b,d )b∈{0,1} using the seeds (sdi)i ̸=i′0

and the permutation π′ from
transcript T ′0, using the same procedure as the verification procedure. Similarly, reconstruct
the values (y(1)b,d , z

(1)
b,d )d≤D,b∈{0,1} using the seeds (sdi)i ̸=i′0

and the permutation π′ from the
transcript T ′1 (which are the same as in T ′0). This yields

y
(0)
d,0 = H · (π′(U (0)

d,0 )↓z
(0))

y
(1)
d,1 = H · (π′(U (1)

d,1 )↓z
(1)),

where z(0) and z(1) are the Round 5 vectors included in the transcripts T ′0 and T ′1, and

z
(0)
d,0 = X

(0)
d,0 − π′(R

(0)
d,0)

z
(1)
d,1 = X

(1)
d,1 − π′(R

(1)
d,1).

Now, because T ′0 and T ′1 share the same states (state′i)i≤n, it holds by construction that
U

(0)
d,0 +U

(1)
d,1 = u,X(0)

d,0 +X
(1)
d,1 = x, R(0)

d,0 +R
(1)
d,1 = r, and y = y

(0)
d,0 + y

(1)
d,1 . Furthermore, by the

collision-resistance of H2, it must hold that y(0)d,b = y
(1)
d,b and z

(0)
d,b = z

(1)
d,b for every b ∈ {0, 1}.

The latter equality implies that z(0) = z
(0)
d,0 + z

(0)
d,1 = z(1) (this value is denoted z from now

on). This gives

z = z
(0)
d,0 + z

(1)
d,1 = X

(0)
d,0 − π′(R

(0)
d,0) +X

(1)
d,1 − π′(R

(1)
d,1) = x− π(r).

Furthermore,

y = y
(0)
d,0 + y

(1)
d,1 = H · (π′(U (0)

d,0 + π′(U
(1)
d,1 )↓z) = H · (π′(u)↓z).

By observing that π(u) ↓ z = π′(u) ↓ (x − π′(r)) = π′(u ↑ v) ↓ x = π′(v) ↓ x, it follows
that H · (π′(v) ↓x) = y, which is a contradiction since the sampling on π′ is conditioned
on ¬BadPerm. Hence, assuming the collision-resistance of H2, it necessarily holds that
Pr[SuccP̃|R = R∗ ∧ ¬BadPerm] ≤ 1/n. Finishing the proof:

Pr[SuccP̃|R = R∗] ≤ p+ (1− p) · Pr[SuccP̃|R = R∗ ∧ ¬BadPerm]

≤ p+ (1− p) · 1
n
= ε,

contradicting the initial assumption that R∗ is good. Therefore, a vector v, a tuple x, and a
permutation π′ such that H · (π′(v)↓x) = y have been extracted, yet v ∈ FK

2 \ PNB .
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The extractor. Equipped with the above analysis, an extractor E is described, which is
given rewindable black-box access to a prover P̃. Define N ← ln(2)/((1 − α)ε̃ − ε). E
works as follows:

• Run P̃ and simulate an honest verifier V to get a transcript T0. Restart until T0 is a
successful transcript.

• Repeat N times:

– Run P̃ with an honest V and the same randomness as in T0 to get a transcript T1.
– If T1 is a successful transcript with i0 ̸= i1, extract the tuple (x, u, r) and the

permutation π. Output π(v)↓x.

The end of the proof is perfectly identical to the analysis in [FJR22, Appendix F]: given that
E found a first successful transcript T0

Pr[SuccT1

P̃
∧ i1 ̸= i0|R good] = Pr[SuccT1

P̃
|R good]− Pr[SuccT1

P̃
∧ i1 = i0|R good]

≥ (1− α)ε̃− 1/n ≥ (1− α)ε̃− ε,

Hence, by definition of N , E gets a second successful transcript with probability at least
1/2. From there, the analysis of the expected number of calls E[call] of E to P̃ is identical
to [FJR22, Appendix F]:

E[call] ≤ 1 + (1− Pr[SuccP̃]) · E[call] + Pr[SuccP̃] · (N + (1− α/2) · E[call])

=⇒ E[call] ≤
2

αε̃
·
(
1 + ε̃ · ln(2)

(1− α)ε̃− ε

)
,

which gives an expected number of calls poly(λ)(λ, (ε̃− ε)−1) by setting α← (1− ε/ε̃)/2

(corresponding to (1− α)ε̃ = (ε+ ε̃)/2). This concludes the proof.

From soundness to EUFKO security. Given a five-round identification protocol where
the probability of sampling a “bad” Round 3 challenge is bounded by p, and the probability
of sampling a “bad” Round 5 challenge is bounded by 1/n, it follows from a standard
application of the Fiat-Shamir methodology (adapted to 5-round protocols) to the τ -fold
parallel repetition of the identification scheme given in Protocol 17 that, when modeling
H1 and H2 with random oracles, there exists an extractor which extracts a weakly valid
witness x∗ ∈ X given any adversary that succeeds with probability at least Pr[X + Y = τ ],
where with probability at least 1 − εG over the random choice of (H, y), it holds that
X = maxα∈Q1{Xα} and Y = maxβ∈Q2{Yβ} with p = 4/B, Xα ∼ Binomial(τ, p), and
Yβ ∼ Binomial

(
τ −X, 1

N

)
where Q1 and Q2 are sets of all queries to the oracles H1 and H2.

With probability at least 1− 1/2λ, this weakly valid witness is necessarily a regular witness.
This concludes the proof.
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As discussed in Section 4.2, threshold signatures offer resilience to failures, data loss, and
enhance decentralization. Despite the success of MPC-in-the-Head in enabling efficient
schemes [KKW18; KZ20b; BDK+21; ZCD+20; DDO+19; FJR22; AGH+23; BKP+23; ABC+23;
ABB+23; BFR23; GSR23; DGO+23; CHT23; HJ24; BBS+23; LMØ+23; ZLH24; BBM+24;
OTX24], extending it to threshold signatures remains an open problem: current threshold
schemes [PKM+24] fail to achieve efficiency when built on MPC-in-the-Head due to reliance
on GGM trees and the need for non-black-box use of cryptographic primitives. Recent
work [DKR24] proves that threshold MPC-in-the-Head signatures must either tolerate large
signature sizes or use non-black-box techniques, highlighting inherent limitations in the
current approaches. In this chapter, a threshold signature is defined starting from the
signature presented in Chapter 5, circumventing all the challenges arising from its structure.
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From now on, the term parties will be used to refer to the virtual participants emulated in
its head by the prover of an MPC-in-the-Head protocol, and the term users will refer to the
actual participants that interact to distributively generate a signature. Given a vector x of
length 6n, viewed as a concatenation of n “blocks” of size 6, let BHW6(x) denote the vector
over F3 whose i-th entry is the Hamming weight of the i-th block of x modulo 3.

7.1 Problem Statement

In this chapter, the feasibility of designing efficient threshold signatures from MPCitH signa-
tures is explored, despite the strong impossibility result of [DKR24]. The main contribution
is a general recipe for converting any MPCitH signature into a “threshold-friendly” signature
scheme. This approach does not circumvent the impossibility result of [DKR24]: instead, it
accepts that the size of the signature scheme grows with the number of users, by considering
the following question: given that [DKR24] implies that all threshold-friendly MPCitH
signatures must grow with the number of users (or else make expensive non-black-box use
of cryptography), how much can this linear dependency in the number of users be reduced?
The main finding is the following: there is a general template for transforming any MPCitH
signature into a threshold-friendly signature of size λ2n + O(1) bits, where the constant
depends on the concrete scheme. When λ = 128, this results in a size of 2kB per user. This
represents a significant improvement over the naive strategy of concatenating independent
signatures from all users. While these numbers may seem somewhat underwhelming and
are not competitive with lattice-based threshold signatures such as [PKM+24], they provide a
useful data point regarding the best-possible signature size achievable in a threshold-friendly
setting. It is hoped that this result will inspire further work in the area.
An interesting consequence of this result is that, in the context of threshold signatures, the
size difference between existing MPCitH candidates is reduced to the O(1) term, which
becomes negligible as n grows. This has the conceptually intriguing effect of inverting
the notion of the “best” MPCitH signature in this context: older schemes, which are no
longer state-of-the-art and have larger sizes, tend to have simpler structures. This simplicity
results in much more efficient threshold signature schemes, particularly in terms of the
communication and computation required for distributively generating a signature. This
behavior is illustrated through a detailed case study applying the template to the MPCitH
scheme from Section 5.4, a scheme based on the regular syndrome decoding assumption.
Although it has been superseded by more recent works [ZLH24; OTX24] that achieve
significantly more compact signatures, its simple structure allows for a very straightforward
and efficient distributed signing procedure in its threshold-friendly variant.
To provide concrete numbers: using K = 1842, k = 1017, w = 307, τ = 11, and N = 213

from Section 5.4, the threshold signature scheme achieves amortized communication of
71.2kB per user (when instantiating the underlying “modulus-switching” functionality as
described in Section 7.5.3.1) and produces signatures of size approximately 2n+6 kilobytes.
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7.2 Challenges in thresholdizing MPCitH signatures

7.2.1 An MPC-in-the-Head and VOLE template.

The starting point is the observation that all modern MPC-in-the-Head and VOLE-in-the-
Head signatures share a common high-level template (up to, sometimes, minor variations).
A rough outline of the template is as follows:

• The signer, using a root key and some random salt, derives root keys and salts for each
round (where the rounds correspond to the number of repetitions τ of the underlying
identification scheme to achieve negligible soundness error).

• For each round k ≤ τ , using the round root key and salt, the signer expands the root
key into N = 2d pseudorandom (leaf seed, commitment) pairs, denoted (sdki , com

k
i ),

using a full binary tree a laGGM, where each internal node has two children, computed
by applying a length-doubling pseudorandom generator on the value of the parent
node.

• The concatenation of all commitments of the rounds is hashed with a collision-resistant
hash function, and all hashes of all rounds are hashed together into a single hash.

• For each round, the leaf seeds are further expanded via a PRG into 2d pseudorandom
additive shares (skj )j≤N of a target tuple, which usually consists of the witness together
with (potentially) some correlated random coins. An auxiliary string, or shift, is
constructed to offset the sum of the shares such that it reconstructs to the target tuple
(alternatively, the shifts can be computed after the collapsing step that follows).

• For each round k, the 2d shares are collapsed into d aggregated values, where the i-th
value is computed by aggregating all shares skj such that the i-th bit of j (viewed as
a bitstring over {0, 1}d) is 0. The MPC-in-the-Head view on this process is that of
collapsing one 2d-party (virtual) MPC instance into d 2-party (virtual) MPC instances
by aggregating the shares along the hyperplanes of the d-dimensional boolean hy-
percube. The VOLE-in-the-Head view differs in semantics (the collapsing process
is viewed as a reduction from an (N − 1)-out-of-N oblivious transfer instance to a
(subspace) vector-OLE correlation over the subspace Zd), but the process is identical.

• (Optional) A consistency challenge (for each round) is derived from the shifts and the
hash of the commitments. This challenge is used to check the consistency of the
shifted aggregated shares concerning the correlation they are supposed to satisfy.

• (Optional) A proof of consistency is derived from the challenge and the aggregated
shares. Usually, this proof has a very simple structure and involves only challenge-
dependent linear combinations of the aggregated shares.
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• A protocol challenge (for each round) is derived from the shifts and the hash of the
commitments (or, if a consistency challenge was used, from the consistency challenge
and the consistency proof). This challenge is used for the execution of the main
virtual MPC protocol (for MPC-in-the-Head proofs) or VOLE-based ZK proof (for
VOLE-in-the-Head proofs) and is typically a “Schwartz-Zippel” challenge (used to
collapse the verification of a set of multivariate polynomial equations).

• For each round, the virtual MPC protocol, or the designated-verifier VOLE-based ZK
proof, is run.

• An opening challenge for each round is derived from the previous challenge. This
challenge is used to define the virtual parties to open in the MPC-in-the-Head protocol
(or, in VOLE-in-the-Head language, it defines the VOLE MAC key for the designated-
verifier VOLE-based ZK proof).

• Eventually, an opening of each round is computed. It contains the opening to all-but-
one of the leaf seeds (if the challenge is∆k ∈ {0, 1}d in round k, the opening contains
the values on the nodes of the co-path from the root to the leaf ∆k in the k-th GGM
tree) as well as comk

∆k
.

On Figure 7.1, a more precise description of the typical MPC-in-the-Head template is
represented, indicating the subroutines involved, their inputs and outputs, and using colors
to provide a high-level overview of the difficulties that arise in a threshold setting. The term
“PPRF” stands for puncturable pseudorandom function [KPT+13; BW13; BGI14] and captures
the abstract primitive realized by the GGM PRF [GGM86]: a pseudorandom function with
domain size N equipped with an efficient puncturing algorithm that, given a PPRF keyK

and a point ∆ ≤ N , generates a succinct key K{∆} that allows recomputation of the PPRF
on all points except ∆. “VOLE” stands for vector oblivious linear evaluation, and denotes
the (linear) aggregation procedure that converts a 2-party (N − 1)-out-of-N oblivious
transfer into additive shares of ∆ · u, where ∆ is the punctured point (the selected leaf)
and u is a pseudorandom string known to the signer. This step is syntactically identical to
the hypercube technique [AGH+23] that collapses an N -party virtual MPC protocol into
d = logN instances of a 2-party protocol (but the alternative VOLE-style view has proven
conceptually useful and is at the heart of the line of work on VOLE-in-the-Head signatures).
The color code of Figure 7.1 is outlined below:

: the red color denotes the subroutines that are challenging to generate in a distributed
setting, and whose naive distributed evaluation is highly non-black-box. These are handled
by duplicating the PPRF instances, letting each user locally run its own PPRF instances and
computing the VOLEs / hypercube aggregated shares. The VOLEs obtained by each user are
viewed as additive shares of the global VOLE of the signature.

: the blue color denotes calls to a hash function on the private outputs of the PPRF
functionality. Instead, each party locally hashes its shares of the commitments, and all
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parties hash the concatenation of the local hashes.
: the green color denotes functionalities that are typically much simpler to evaluate

distributively (often involving mostly linear operations). When adapting the high-level
template to a concrete choice of MPCitH signature, the bulk of the work consists of designing
efficient MPC protocols for computing the green subroutines.

: the gray color denotes the optional Quicksilver proof challenge [YSW+21]. This check
is typically present in VOLE-in-the-Head protocols [BBS+23; LMØ+23; ZLH24; BBM+24;
OTX24], but absent from MPC-in-the-Head protocols [KZ20b; BDK+21; ZCD+20; DDO+19;
FJR22; AGH+23; BKP+23; ABC+23; ABB+23; BFR23; GSR23; DGO+23; CHT23; HJ24] that
directly rely on a virtual MPC protocol to prove the target relation (though, in principle, such
a protocol can also receive a challenge, typically to introduce batching and make verification
more efficient).

: the red arrow denotes outputs that are directly appended to the signature or that can
be computed from values included in the signature.

Figure 7.1: small High-level representation of the common structure of existing MPC-in-the-Head and VOLE-in-

the-Head signature schemes. sk denotes the secret key, or witness (the preimage of some one-way function).
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7.2.2 Inefficiencies in thresholdizing MPCitH signatures

Any signature scheme can be generically converted into a threshold signature scheme via
generic maliciously secure MPC. However, the structure of MPC-in-the-Head signature
schemes makes them especially ill-suited for such generic approaches, resulting in extremely
inefficient constructions.
The main challenge lies in the construction of the GGM tree, since to generate a signature:

• The signer samples τ root keys (and salts) and generates τ full binary trees using
a length-doubling PRG (e.g., SHA3 [CHT23], AES in counter mode [LMØ+23], or
fixed-key AES 6.3).

• Each tree has N leaves, where N typically ranges from 28 (“fast”) to 216 (“short”).
Figure 7.2 shows an example with N = 24.

• Each leaf is stretched (via a PRG) into a commitment and a virtual party share, repre-
sented respectively in green and purple on Figure 7.2.

• An auxiliary string is constructed from the aggregatedN virtual party shares to correct
the N -th share, and the N commitments are concatenated and hashed to create a
succinct commitment.

• Once the challenge leaf i is determined, a succinct opening to all leaves except i is
added to the signature by including all seeds on the co-path to the selected leaf node
(the co-path is represented in blue on Figure 7.2, and the selected leaf in red).

Figure 7.2: A full GGM tree with N = 16. The seeds on the leaves are stretched into two strings, a

commitment string (in green) and a virtual party share (in purple) The red-colored leaf denotes the

seed that is not revealed in the signature, and the blue nodes denote the seeds on the co-path to the

selected leaf. The signature contains the co-path seeds as well as the commitment string to the red leaf

(denoted by a green-filled blue rectangle). The N -th virtual party share, represented in a darker purple,

is computed from the aggregated virtual party shares from 1 to N − 1 instead of being pseudorandomly

generated from the N -th leaf seed.
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7.2.2.1 Limitations of the naive approach To distributively generate an MPC-in-the-
Head signature, users must perform the following steps:

1. Run (τ times in parallel) a maliciously secure protocol that expands shares of a root
seed into a full binary tree of PRG evaluations, and stretches each leaf seed via a PRG,
ensuring the virtual party shares remain secret.

2. Reveal the N commitments (which can be locally hashed into a short digest).

3. Securely compute the N -th virtual party share (auxiliary string) from the aggregated
virtual party shares of the previous N − 1 leaves.

4. Once the non-opened leaf node is determined, reconstruct and append to the signature
the seeds on the co-path to the selected leaf.

The above procedure is extremely inefficient: even in the two-party setting, a state-of-the-
art maliciously secure constant-round protocol for AES [WRK17a] requires, on average,
6.7ms per AES computation and 5.2MB of communication. Each of the τ full binary trees
contains 2N nodes, with at least two additional AES evaluations per leaf node (to generate
the commitment and virtual party share). This results in a total of 4τN AES evaluations.
For FAEST-128s parameters [LMØ+23], whereN = 212 and τ = 11, the total communication
reaches nearly a terabyte (937GB), with more than 20 minutes of computation required
only to expand the binary trees. As the number of users increases, the inefficiencies grow
significantly worse. At a higher level, two main issues arise:

(1) The protocol relies on a non-black-box use of the PRG, resulting in significant compu-
tational costs.

(2) Communication scales with N , defeating the purpose of MPCitH, where large N

usually reduces communication.

7.2.2.2 The black-box barrier Could the non-black-box use of PRGs be avoided? Un-
fortunately, the answer is no: Doerner, Kondi, and Rosenbloom [DKR24] proved that any
threshold MPC-in-the-Head signature scheme must either make a non-black-box use of
hash functions/PRGs, or tolerate a signature size that grows with the number of signers.
This impossibility result directly applies to schemes like FAEST and Picnic, showing that the
naive approach cannot be significantly improved without modifying the signature scheme.

7.2.3 The threshold-friendly approach

The impossibility result of Doerner et al. [DKR24] is quite strong, and no way to circumvent
it is evident. As a result, the MPC-in-the-Head approach is modified to make it threshold-
friendly, allowing the size of the signature to grow with a bound on the number of signers.
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7.2.3.1 Scaling the GGM trees A trivial way to make a signature scheme threshold-
friendly is to increase its size proportionally with the number of users: given n signing keys
(sk1, · · · , skn), a threshold signature could be defined as:

Sign′(m, (sk1, · · · , skn)) := Sign(m, sk1)|| · · · ||Sign(m, skn).

In this case, the computation among n users is straightforward: each user samples their
own key and locally generates their signature. However, in the context of MPC-in-the-Head
signatures, a more efficient approach can be achieved by letting only the number of GGM
trees scale with the number of users.
The MPC-in-the-Head signature consists of τ co-paths, where each co-path corresponds to
the seeds on the path from the root node of a GGM tree to the selected leaf. The total size of
these co-paths is independent of N and is identical for nearly all existing MPC-in-the-Head
schemes. Specifically:

Co-path size = λ · logN, τ =
λ

logN
.

Here, λ = 128 ensures soundness 1/2λ after τ repetitions, and the total size of the co-paths
becomes τλ logN ≈ λ2 (i.e. 2kB for λ = 128).
This leads to a significant reduction in size compared to naively concatenating n signatures.
For example:

• FAEST-128s and FAEST-128f signatures (5kB and 6.3kB respectively) result in signature
sizes of 2n+ 3 kB and 2n+ 4.3 kB for n users. This is much smaller than the naive
5n kB and 6.3n kB sizes.

• The scheme from 5.4 (12.5kB and 9kB for fast and short variants) achieves sizes of
2n+ 10.5 kB and 2n+ 7 kB respectively, compared to the naive 12.5n kB and 9n kB.

As a consequence, the difference in signature sizes among various MPC-in-the-Head schemes
becomes asymptotically negligible for large n. This shifts the focus to the computational and
communication costs of generating signatures distributively. For example, some schemes
such as the one in Section 5.4, which are no longer state-of-the-art in terms of signature
size, perform well in this setting, while state-of-the-art schemes like FAEST [LMØ+23] face
greater challenges in achieving reasonable efficiency.

7.2.3.2 The proposed approach In more detail, the proposed approach generates n
independent GGM trees from n independent roots for each of the τ rounds. The pseudoran-
dom strings computed from the seed leaves of each tree are viewed as n-user shares of the
commitments and virtual party shares. Specifically the i-th virtual party commitment and

share are defined as the XOR of the i-th leaf strings of each of the n GGM trees.
This design enables each user to locally generate their own GGM tree, ensuring that the
virtual party shares are held as n-wise shares without requiring any communication.
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Distributively computing a signature then reduces to the following four tasks:

1. Compute the hash of the concatenation of all commitments.

2. Distributively compute the auxiliary string.

3. Distributively compute the virtual MPC protocol.

4. Append all τ · n co-paths to the final signature.

Items 2 and 3 can typically be performed efficiently. The auxiliary string is computed via
a distributed protocol from the locally-aggregated strings of each of the n users, ensuring
that the total communication remains independent of the number N of leaves. Additionally,
the virtual MPC protocol operates on d = logN virtual party shares (collapsed from N

shares via the hypercube technique [AGH+23]), and its extension to n ·N parties introduces
minimal overhead in many cases.
Item 4, on the other hand, increases the signature size by 2(n− 1) kB when λ = 128. This
linear-in-n growth is unavoidable for schemes whose threshold version makes a black-box
use of the underlying primitive, as discussed earlier.1
For item 1, reconstructing the N commitments for each of the τ rounds (Item 1) imposes a
significant communication cost. For example:

• 5.8MB per user for τ = 11 and N = 212,

• 75.5MB per user for τ = 9 and N = 216.

To mitigate this overhead, the following optimization is applied:

• Each user locally hashes the concatenation of their commitment shares and broadcasts
the resulting hash.

• The final hash is obtained by concatenating all n hashes.

This optimization reduces communication to 32 bytes per user, with a slight increase in
signature size by 16n bytes, as all n shares of the selected leaf commitment must be included
for verification. This transform reduces the size gap between MPC-in-the-Head schemes,
shifting the focus to computational and communication efficiency in the threshold setting.

7.3 Threshold signatures from threshold-friendlyMPCitH
signatures

Given a threshold-friendly MPCitH signature scheme (KeyGen, Sign,Verify) that follows the
template outlined in the previous section 7.2.1, a distributed signing procedure is sketched.

1Lowering this cost below 2kB/user remains an open challenge.
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Let Commit denote an extractable and equivocable commitment scheme. The notations
from the template of Figure 7.1 are used. The protocol involves n users U1, · · · ,Un. It is
assumed that the setup is executed by a trusted dealer.2

Trusted setup.
1: Sample (sk, pk)← KeyGen(1λ).
2: Sample n shares (sk1, · · · , skn) of sk.
3: Output pk as a public output, and send skj to each user Uj . // Additionally, the trusted

setup might append other correlated material to facilitate the executions of distributed
protocols during the signing phases, such as e.g. PCG seeds.

Commit-and-open phase.
1: Each user Uj samples τ root keys (K1,j , · · · ,Kτ,j).
2: A master salt salt is sampled via a secure coin-flipping protocol, and τ salts

(salt1, · · · , saltτ ) are derived from salt using a PRG modelled as a random oracle.
3: Each user Uj locally computes (sde,ji , come,j

i )i≤N ← PPRF(salte,Ke,j) for e = 1 to τ

and sets hj ← H(com1,j
1 , · · · , com1,j

N , · · · , comτ,j
1 , · · · , comτ,j

N ).

Commit: each user Uj sends cj ←$ Commit(hj).

Open: each user Uj opens cj to hj .

Hash: all users compute h1 ← H(h1, · · · , hn).

Shift.
1: Each user Uj generates τ VOLE pairs (ue,j , ve,j)← VOLE(sde,j1 , · · · , sde,jN ) (equivalently,

τ pairs of hypercube-aggregated shares).
2: For every e, the pairs ue,j , ve,j)j≤n are viewed as additive shares of a single VOLE pair

(ue, ve).
3: All parties engage in a maliciously secure MPC protocol to securely instantiate the n-party

functionality Fshift that takes as input shares of (ue, ve)e≤τ and publicly outputs the shift
shift (in VOLE-in-the-Head terminology) or auxiliary string aux (in MPC-in-the-Head
terminology).

VOLE consistency check.
1: All parties derive from (h1, shift) a first challenge chall1.
2: In the VOLE-in-the-Head setting ser Uj locally computes shares of the VOLE consistency

check from (chall1, shift, (ue,j , ve,j)e≤τ ). The users broadcast their shares and reconstruct
the VOLE consistency check (this is possible because the check is performed via a linear
universal hash function).

3: In the MPC-in-the-Head setting, the auxiliary string typically has a more complex struc-
ture (e.g. Beaver triples in [BDK+21; CHT23], shares of the same pseudorandom bit over
F2 and F3 in Chapter 5, or shares of a pseudorandom integer and its one-hot-vector rep-

2This is a reasonable assumption in the common scenario where a signer delegates its signing capability to
n untrusted servers. In other contexts, no signer is assumed to know the full secret key, and the trusted setup
must be replaced by a distributed protocol. For simplicity, the former scenario is considered in this work.
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resentation in Chapter 6). Accordingly, the check becomes more involved. Nevertheless,
in existing MPC-in-the-Head protocol, this consistency check remains fully linear (it in-
volves sacrificing in [BDK+21; CHT23] and randomly shuffling the correlated randomness
in 5.4 and 6.3 using a public random permutation derived from the challenge).

(Optional) Quicksilver challenge.
1: All parties publicly derive from (h1, shift) and from the VOLE consistency check a chal-

lenge chall2 for the Quicksilver proof.
Quicksilver proof / virtual MPC protocol.
1: In this step, the parties distributively run the virtual MPC protocol (alternatively, dis-

tributively generate the quicksilver proof). The cost of this step varies widely from one
signature scheme to the other: in some signature schemes such as the ones presented
in this manuscript, the virtual MPC protocol is reduced to a bare minimum, involving
only local linear operations and broadcasting shares. As a consequence, distributively
emulating this virtual MPC protocol among n users is straightforward. In contrast, in
schemes such as FAEST (and all VOLE-in-the-Head schemes), this step requires executing
a maliciously secure protocol for distributively generating a Quicksilver proof, which
appears considerably more challenging. In particular, in FAEST, it requires running a
maliciously secure n-user evaluation of the AES circuit over an extension field.a

Opening.
1: Eventually, all parties publicly derive from (h1, shift) and the transcript π of the virtual

MPC protocol / the Quicksilver proof π a challenge chall3 that encodes the τ positions
(i1, · · · , iτ ) ∈ [N ]τ that should not be opened.

2: Each user Uj computes (CoPathe,j , come
ie
)e≤τ , where CoPathe,j denotes the logN -sized

tuple of seeds on the co-path from the rootKe,j to the ie-th leaf.
3: They output the final signature

σ = (salt, h1, (chall2), chall3, (CoPath
e,j , come

ie)e≤τ,j≤n, π, shift).

aThe work of [WRK17b] reports more than 20s of computation for 14 parties, and about 3 minutes
for 128 parties, when evaluating the plain AES circuit; the version needed here would be a large
constant factor larger, since the AES circuit must be evaluated over an extension field.

Protocol 18: A template protocol for an MPC/VOLE threshold signature

7.4 Security and Performance Analysis

Obstacles towards proving security. The above template threshold signature appears
intuitively secure. However, security cannot be reduced to the unforgeability of the under-
lying (threshold-friendly) MPC-in-the-Head scheme. To understand the issue, consider the
first steps of the security analysis. Assume that all users except Uj are corrupted, and let Sim
denote a simulator that emulates Uj . In the setup phase, Sim receives pk from the signature
functionality and samples n−1 random shares (skℓ)ℓ ̸=j . During the commit-and-open phase,
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Sim commits to a dummy string (its opening can be adapted later since the commitment
scheme is equivocable) and extracts (hℓ)ℓ ̸=j from the commitments (cℓ)ℓ̸=j .
At this point, the proof becomes essentially stuck. The goal of Sim is to act as an interface
between the corrupted parties and the signing oracle. To do so, Sim is not given access to the
secret key and must simulate using only access to the signing oracle. By the unforgeability of
the signature scheme, this implies that the only way for Sim to properly simulate a threshold
signing session on a message m is to somehow force the signing session to output the exact
same signature received from the signing oracle.3
Given access to a signing oracle, Sim receives a signature σ = (salt, h1,

(chall2), chall3, (CoPath
e,j, come

ie)e≤τ,j≤n, π, shift) on a message m. From the signature,
Sim obtains h1 = H(h̃1, · · · , h̃n). To simulate, Sim would need to find hj such that
H(h1, · · · , hn) = H(h̃1, · · · , h̃n), which would break the collision-resistance of H (and
thus the security of the signature scheme). Worse, the co-paths and commitments
(CoPathe,j, come

ie) included in the signature allow recomputing the h̃ℓ. Because Sim must
force the signing session to output the same co-paths as contained in σ, the adversary would
inevitably notice in the final signature that the h̃ℓ recomputed from the co-paths are not
equal to the hℓ. Therefore, Sim cannot simulate the interaction at this stage.

Candidate workarounds. This issue arises directly from the handling of item 1 in Sec-
tion 7.2.3.2. If the parties computed h1 as a hash of the XOR of their individual commitment
shares, then Sim could reconstruct from σ the commitment tuple (come

i )i≤N,e≤τ , extract
the commitment shares of the corrupted users from (cℓ)ℓ ̸=j , and adapt the opening of its
commitment cj to the XOR of the commitment tuple and the corrupted parties’ commitment
shares. This strategy is similar to the one used in standard threshold signature schemes,
such as threshold variants of Schnorr. However, in the MPCitH context, this approach would
incur prohibitive communication overhead.
To preserve the low communication of the current solution, the most natural workaround
would be to modify the threshold signing protocol to enable Sim to force the corrupted
users to output the same hashes h̃ℓ as contained in σ. The only way to achieve this would
be to compute the hash of each user via a distributed protocol instead of locally. However,
computing the hash values hℓ via a distributed protocol would again result in prohibitive
communication overhead, as the input size to each hash is very large, negating the com-
munication advantages of the method. Furthermore, such a distributed computation would
require non-black-box use of H, introducing significant computational complexity.

3Technically, Sim could potentially force the output of a different signature if the signature scheme is
unforgeable but not strongly unforgeable. However, as all known MPCitH schemes are plausibly strongly
unforgeable, it seems unlikely that this strategy could be implemented.
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7.4.1 Corrupted Existential Unforgeability under Chosen Message
Attack

To resolve this conundrum, a different strategy is adopted: the threshold signing protocol
is not changed; instead, the unforgeability game of the signature is modified. The main
observation, which is very natural in retrospect, is the following: in the course of modifying
the signature scheme to make it threshold-friendly, the scheme also becomes more secure in
a specific sense that will be clarified shortly. The security proof of existential unforgeability
of an MPCitH signature relies at some point on a sequence of game hops to replace the
co-path and the selected leaf seed with uniformly random strings, by invoking log n times
the security of the PRG. In turn, this allows the replacement of the share generated from the
selected leaf with a random string. Since a portion of this string is used to mask the witness,
this guarantees that the witness remains hidden (statistically, at this point).
Now, in the threshold-friendly variant, there are n GGM trees and n co-paths, and the n ·N
strings stretched from the leaf seeds of all trees form additive shares of theN virtual parties’
shares. The same analysis as with a single co-path applies to this setting, but crucially, it
suffices to replace the selected leaf share of a single GGM tree with a random string (this
is easy to see: the “shares of shares” form a n · N -party additive sharing of the witness,
and replacing a single share with a random string suffices to statistically mask the witness).
This implies that the scheme satisfies the following stronger security property: it remains
secure even if all but one of the root keys are controlled by the adversary (instead of being
randomly sampled by the signing oracle), as long as one root key is guaranteed to remain
honestly and secretly sampled by the signing oracle. In other words, the threshold-friendly
variant achieves a form of resistance against partial corruption of the random tape of the
signature scheme.
This observation is formalized in Definition 7.4.1 by introducing the notion of corruptible
existential unforgeability. Informally, a signature scheme (KeyGen, Sign,Verify) satisfies
(n-users) corruptible existential unforgeability against chosen-message attacks (CEUF-
CMA) if the randomness of Sign is an n-tuple (r1, · · · , rn), and no adversary can forge
a signature after making an arbitrary polynomial number of queries to the following cor-
ruptible signing oracle: the oracle receives queries (m, i, (rj)j ̸=i), samples ri, and returns
σ ← Sign(m, sk; (r1, · · · , rn)).
Returning to the security analysis of the threshold signature scheme, Sim can emulate the
commit-and-open phase of the protocol as follows:

• It extracts the hashes (hℓ)ℓ̸=j from the corrupted users’ commitments.

• From each hℓ, Sim extracts the root keys (K1,ℓ, · · · , Kτ,ℓ). This extraction step will
be discussed later (but in short, it relies on modeling H as a random oracle, and the
AES cipher used to instantiate the GGM PPRF as an ideal cipher, and allowing Sim to
observe the queries).
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• Sim sends (m, j, (K1,ℓ, · · · , Kτ,ℓ)ℓ̸=j) to the corruptible signing oracle, and receives a
signature σ. By design, the hash h1 contained in σ is of the formH(h1, · · · , hj, · · · , hn),
where the (hℓ)ℓ̸=j are the same as those extracted from the commitments cℓ (as they
have been computed from the same root keys).

• Sim recomputes hj from σ using (CoPathe,j, come
ie)e≤τ and adapts the opening of cj

to hj using equivocability.

7.4.1.1 A dummy attack Alas, the strategy described above does not yet quite work due
to an annoying “dummy attack” that a corrupted party could execute. In the analysis, it was
assumed that given the hashes hℓ extracted from Uℓ’s commitments (where Uℓ denotes the
ℓ-th user), Sim could recover the root keys (K1,ℓ, · · · , Kτ,ℓ) of Uℓ by observing its queries
to the random oracle and to the ideal cipher. However, what happens if Sim does not find
preimages (K1,ℓ, · · · , Kτ,ℓ) among the queries that are consistent with hℓ? Several reasons
could explain this situation. Perhaps Uℓ created a query uncorrupted or simply did not query
anything and sampled hℓ at random. These cases are easy to rule out: with overwhelming
probability, the collision-resistance and one-wayness of the random oracle guarantees that
the user will fail to produce an accepting signature, and Sim can proceed through the
simulation using dummy values.
However, there is one specific way for Uℓ to avoid querying one of the root keysKe,ℓ and
still produce an accepting signature with non-negligible probability: Uℓ can guess a selected

leaf i∗, sample uniformly random seeds on the co-path to i∗ (the blue nodes on Figure 7.2),
and sample a uniformly random seed on i∗ (the red node on Figure 7.2). Using these “fake”
seeds, Uℓ can recompute all seed leaves of the GGM tree and run the entire threshold signing
protocol. At the end of the protocol, during the opening phase, a challenge ie will be
generated. With probability 1/N , it might happen that ie = i∗, in which case, by adding
its fake co-path to the signature, Uℓ creates a valid signature! (Not an honestly distributed
signature, but one that still passes verification). This is a dummy attack that achieves
nothing — Uℓ still requires a share skℓ of sk to compute the remainder of the signature unless
it produces fake co-paths for all e ∈ [τ ], which happens only with negligible probability.
Nonetheless, this attack breaks the simulation, as Sim cannot simply assume that failing to
extract a root key guarantees the signature will not be verified.
This last challenge is handled by revisiting the (corruptible) threshold-friendly signature
scheme construction. The syntax of the scheme is modified to allow it to take as random
input either root seeds or pairs (co-path, selected leaf seed). The signature algorithm then
proceeds as before, reconstructing the leaf seeds either from the root or from the co-path. If
a root Ke,ℓ is replaced with a co-path to a leaf i∗ but i∗ ̸= ie, the signing algorithm raises a
flag flag = ⊥ (indicating that the signature generation failed to produce a valid signature),
but still outputs the invalid signature. Fortunately, this syntactic change has almost no
impact on the CEUFCMA security analysis of the scheme (as the analysis relies essentially
on replacing the uncorrupted root seed with a random co-path to the correct selected leaf),
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though it does make the description of the scheme more tedious.
With this modification, the dummy attack can be circumvented as follows: during the
commit-and-open phase, Sim will attempt to extract either root keys Ke,ℓ or pairs (co-path,
selected leaf seed) from the preimages. If neither extraction attempt succeeds, Sim proceeds
with the rest of the simulation using dummy values, and the signature is guaranteed to
be invalid (with overwhelming probability over the choice of the random oracle and ideal
cipher). If extraction succeeds, Sim feeds the extracted values to the corruptible signing
functionality (which accepts either root keys or (co-path, leaf) pairs as randomness input) and
proceeds with the rest of the simulation using the signature returned by the functionality
(which may or may not be a valid signature, depending on whether a corrupted party
attempted a dummy guess attack and guessed incorrectly).

7.4.1.2 Corruptible existential unforgeability At this point, it is now possible to
formally introduce the Corruptible Existential Unforgeability under Chosen Message Attack

(CEUF-CMA) security model, in which an adversary interacts with the challenger by query-
ing signatures on tuples (m, i, (rj)j ̸=i), where the chosen seeds are used by the challenger
for all-but-one of the trees in the MPC.

Definition 7.4.1. Let n = n(λ) be a polynomial, and let Σ = (KeyGen, Sign,Verify) be a

signature scheme. Σ is defined as an (n+ 1)-source signature scheme if there exist n+ 1 sets

(R,R1, · · · ,Rn) such that the random tape of Sign is sampled from the randomness domain

R×R1 × · · · × Rn.

Definition 7.4.2. Let n = n(λ) be a polynomial, and let Σ = (KeyGen, Sign,Verify) be an

(n+ 1)-source signature scheme with randomness domainR×R1 × · · · × Rn. Consider the

following experiment ExpCEUFCMA
Σ (A) played between a challenger and an adversary A:

1. The challenger generates a key pair (pk, sk)← KeyGen(1λ), and gives the public key pk

to A.

2. The adversary A may adaptively request signatures on tuples (m, i, (rj)j ̸=i), where

i ∈ [n] is chosen by the adversary. For each query (m, i, (rj)j ̸=i), the challenger ran-

domly samples r ←$R (the “uncorruptible” part of the randomness) and the remaining

uncorrupted coins ri ←$ Ri, computes a signature σ ← Sign(sk,m, (r, r1, . . . , rm)),

and returns σ to A.

3. Finally, the adversary outputs a forgery (m∗, σ∗). The experiment outputs 1 if:

• Verify(pk,m∗, σ∗) = 1, and

• no tuple (m∗, i, (rj)
∗
j ̸=i) was previously queried by the adversary.

Otherwise, the experiment outputs 0.
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The advantage of an adversary A in breaking the CEUFCMA security of the scheme Σ is

defined as:

AdvCEUFCMA
Σ (A) = Pr

[
ExpCEUFCMA

Σ (A) = 1
]

where ExpCEUFCMA
Σ (A) is defined as above. A signature scheme Σ is said to be n-user

CEUFCMA-secure if the advantage AdvCEUFCMA
Σ (A) of any polynomial-time adversary A

is negligible.

It is noted that every signature scheme can trivially be converted into a corruptible (n +

1)-source signature scheme as defined above by defining Sign∗(m, sk; (r, r1, · · · , rn)) :=

Sign(m, sk; r) (that is, ignoring the corruptible part of the randomness and using only the
incorruptible part). However, not every (n+1)-source signature scheme is a (n+1)-source
corruptible signature scheme. The results presented build upon the observation that specific
constructions of (n+ 1)-source MPC-in-the-Head schemes are CEUFCMA secure. Looking
ahead, r in the construction will correspond to the salt (which must be sampled randomly
for each signature scheme but is publicly revealed by the signature), and each ri will be a
τ -tuple of seed roots for computing GGM trees.

7.5 An RSD-based threshold signature

The template presented in 7.3 is not an automated compiler; consequently, it does not
produce a comprehensive abstract template capable of automatically deriving a threshold
signature scheme from any MPC-in-the-Head scheme as input, along with a formal proof of
security. This limitation arises due to the subtle low-level differences inherent in existing
MPC-in-the-Head schemes: for instance, variations in how the GGM PPRF is instantiated,
methods of injecting salt into PRG evaluations to mitigate the collision attack of [DN19],
approaches to hashing the τ ·N commitments (either by hashing the full concatenation or
by first hashing the τ blocks of N commitments individually before hashing the resulting τ
hashes), and choices between computing the auxiliary string directly from the virtual party
share or from the VOLE, among other details.
Each MPCitH scheme is also accompanied by its own security analysis. While many analyses
broadly adhere to a similar template, differences in low-level details persist. Moreover, two
primary approaches to security analysis are generally employed: most MPC-in-the-Head
protocols follow the original Picnic analysis [ZCD+20], which is sometimes updated to
model the GGM PPRF directly in the random oracle model to facilitate extraction [CHT23] or
to model the GGM PPRF as a multi-instance PPRF to achieve tight security while relying only
on AES for better efficiency [HJ24]. In parallel, VOLE-in-the-Head protocols typically utilize
the proof methodology introduced by FAEST [LMØ+23], which significantly differs from
the analyses of previous schemes. At a high level, while other MPC-in-the-Head schemes
demonstrate standard soundness and are vulnerable to the Kales-Zaverucha attack [KZ20a]
when the underlying identification scheme has more than three rounds (necessitating
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parameter adjustments), the VOLE consistency check used in FAEST and subsequent works
enables them to achieve the stronger notion of round-by-round soundness [CCH+19; CMS19],
which, in particular, prevents security loss when compiling multi-round identification
schemes via Fiat-Shamir.
Even if a similar analysis is expected (but not formally claimed) to apply to the majority of
MPC-in-the-Head [KZ20b; BDK+21; ZCD+20; DDO+19; FJR22; AGH+23; BKP+23; ABC+23;
ABB+23; BFR23; GSR23; DGO+23; CHT23; HJ24] and VOLE-in-the-Head [BBS+23; LMØ+23;
ZLH24; BBM+24; OTX24] protocols, in this section only a detailed case analysis is presented:
the signature scheme presented in Chapter 5.

7.5.1 The Threshold-Friendly variant of the signature scheme

Outlined below is a threshold-friendly variant of the signature scheme defined in Chapter 5,
based on the regular syndrome decoding assumption. Beyond adapting the construction of
Chapter 5 to align with the introduced recipe and make it "threshold-friendly," additional
updates incorporate optimizations introduced more recently, such as the hypercube tech-
nique and other minor refinements. Consequently, the description might differ significantly
from that of Chapter 5 while remaining the same signature scheme augmented with modern
generic optimizations. In the following, D = logN denotes the logarithm of the number N
of virtual parties.

The PPRF. The construction relies on a multi-instance puncturable pseudorandom func-
tion, as defined in Chapter 6. It is useful to recall that in this context, F denotes the GGM
PPRF, instantiated with a length-doubling PRG, defined as PRGsalt(x) = (AESsalt0(x) ⊕
x,AESsalt1(x)⊕ x), where salt0, salt1 are two λ-bit random strings (parsed from the 2λ-bit
random salt salt given as input to the multi-instance PPRF), and AES is modeled as an ideal
cipher – this implies that the resulting PPRF is indeed (tightly) multi-instance secure as
proved in Chapter 6–. Given a salt salt, a root seed sd, and an index i, sdi ← Fsalt(sd, i)

denotes the i-th leaf of the GGM tree computed using PRGsalt.
To simplify notation, given a tuple cp = (i∗, v1, · · · , vD, sd), Fsalt(cp, i) denotes the following
procedure that computes the PPRF outputs from a co-path instead of a root seed:

• view v1, · · · , vD as the λ-bit seeds on the nodes of the co-path from the root to the
i∗-th leaf (i.e., the blue nodes on Figure 7.2);

• if i ̸= i∗, compute sdi using PRGsalt from its closer ancestor on the co-path (for
example, if i = 1, that would be the seed v2 on the leftmost blue node on Figure 7.2);

• else, if i = i∗, output sdi∗ = sd∗.

Eventually, given a salt salt, a root seed sd, and a leaf index i, CoPathsalt(sd, i) denotes the
procedure which recomputes the entire GGM tree and outputs the D-tuple of seeds on the
nodes on the co-path to the leaf i.
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Key generation. In the proposed signature scheme, the key generation algorithm ran-
domly samples a syndrome decoding instance (H, y) with solution x. The algorithm is
described below.

KeyGen(1λ)

Inputs: A security parameter λ.

1. Sample sd ← {0, 1}λ and set H ← PRG(sd) where H = (H ′|I) ∈ Fk×K
2 is a

parity-check matrix in systematic form.

2. Sample (x|x2)←$ Regw(FK
2 ) with x ∈ FK−k

2 and set y ← H ′ · x⊕ x2.

3. Divide x into n additive shares x̃i for i ∈ [n];

4. Set pk = (sd, y) and sk = (H, (x̃1, · · · , x̃n), y).

Protocol 19: Key generation algorithm of the signature scheme

Signing. The signing algorithm is presented below.

Sign(m, sk; (r, r1, · · · , rn))

Inputs: A messagem ∈ {0, 1}2λ and secret key sk = (H, (x̃1, · · · , x̃n), y).

Randomness:

• Parse r as salt ∈ {0, 1}2λ and derive (salt1, · · · , saltτ )← PRG(salt).

• Parse each rj as (Ke,j)e≤τ and further parse eachKe,j as either sde,j ∈ {0, 1}λ or
as cpe,j = (i∗e,j , v

1
e,j , · · · , vDe,j , sd

∗
e,j) ∈ [N ]× ({0, 1}λ)D+1. // cpe,j corresponds

to using as randomness input a co-path to a leaf i∗e,j and a i∗e,j-th leaf seed sd∗e,j
instead of a root seed sde,j . Note that forcing a choice of co-path to a leaf i∗e,j
yields a correct signature only if ie = i∗e,j in Phase 4. This randomness input is
never used in an honest use of the signing algorithm, but is allowed to specify
the behavior of Sign given corrupted inputs.

Phase 1. For each iteration e ∈ [τ ] and each j ∈ [n]:

• For d = 1 to D, set (Xe,j
d,0, R

e,j
d,0, U

e,j
d,0)← (0, 0, 0) ∈ FK−k

2 × FK−k
2 × FK−k

3 ;

• Set xe,jN ← x̃j , ueN ← 0, and re,j ← 0;

• For i = 1 to N − 1:

1. Compute sde,ji ← Fsalt(sd
e,j , i); // Fsalt(cpe,j , i) if Ke,j = cpe,j

2. (xe,ji , re,ji , ue,ji , come,j
i )← PRG(sde,ji );

// (xe,ji , re,ji , ue,ji , come,j
i ) ∈ FK−k

2 × FK−k
2 × FK−k

3 × {0, 1}λ.
3. xe,jN ← xe,jN ⊕ xe,ji , re,j ← re,j ⊕ re,ji and ue,jN ← ue,jN + ue,ji mod 3;
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4. Compute the virtual parties’ views

(xei , r
e
i , u

e
i ) =

⊕
j

xe,ji ,
⊕
j

re,ji ,
∑
j

ue,ji mod 3

 .

• On node N : // computing the auxiliary string

1. Compute sde,jN ← Fsalt(sd
e,j , N) // Fsalt(cpe,j , N) if Ke,j = cpe,j

2. Set (re,jN , come,j
N )← PRG(sde,jN );

3. Set re,j ← re,j ⊕ re,jN , re ←
⊕

j r
e,j , ue ←

∑N−1
i=1 uei mod 3, and ueN ←

re − ue mod 3.
4. Set the N -th virtual party’s view

(xeN , reN , ueN ) =

⊕
j

xe,jN ,
⊕
j

re,jN , ueN mod 3


5. Define auxeN ← (xeN , ueN );

• For i = 1 to N : // hypercube aggregation

– For all d ≤ D such that i[d] = 0, set: // i[d] is the d-th bit of i.
∗ Xe,j

d,0 ← Xe,j
d,0 ⊕ xe,ji ;

∗ Re,j
d,0 ← Re,j

d,0 ⊕ re,ji ;

∗ U e,j
d,0 ← U e,j

d,0 + ue,ji mod 3;
– Set the hypercube-aggregated views to

(
Xe

d,0, R
e
d,0, U

e
d,0

)
=

⊕
j

Xe,j
d,0,
⊕
j

Re,j
d,0,
∑
j

U e,j
d,0 mod 3

 .

• Get hj1 ← H1(com
1,j
1 , · · · , com1,j

N , · · · , comτ,j
1 , · · · , comτ,j

N ); // Accumulate the
commitments inside the hash rather than storing and hashing all at once.

• Set h1 ← H1(m, salt, h11, · · · , hn1 );

Phase 2.

1. (πe)e≤τ ← PRG1(h1). // πe ∈ Perm([K − k]).

Phase 3. For each iteration e ∈ [τ ]:

1. ze1 ← x⊕ πe(re), ze2 ← H ′ · ze1 ⊕ y,
and ze ← (ze1||ze2);

2. For d = 1 to D, set:
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• zed,0[1] ← Xe
d,0 ⊕ πe(Re

d,0), zed,0[2] ← H ′ · zed,0[1] ⊕ y, and zed,0 ←
(zed,0[1]||zed,0[2]);

• zed,1[1]← ze1 ⊕ zed,0, zed,1[2]← ze2 ⊕ zed,0[2], and zed,1 ← (zed,1[1]||zed,1[2]);
• x̄ed,0 ← ze + (1− ze) · πe(U e

d,0);
• x̄ed,1 ← x− x̄ed,0 mod 3.
• For b = 0, 1, set msged,b ← (zed,b,BHW3(x̄

e
d,b)).

3. Get h2 ← H2(m, salt, h1, (msged,b)d≤D,b∈{0,1},e≤τ );

Phase 4.

• Set (ie)e≤τ ← PRG2(h2). // ie ∈ [N ].

• For e = 1 to τ , if there exists j ∈ [n] such thatKe,j = cpe,j , denoting i∗e,j the first
component of cpe,j , if i∗e,j ̸= ie, raise a flag flag = ⊥. Else, raise a flag flag = ⊤.

• For all e, j such that Ke,j = cpe,j = (i∗e,j , v
1
e,j , · · · , vDe,j , sd

∗
e,j), define

copathe,j = (v1e,j , · · · , vDe,j).

• For all e, j such thatKe,j = sde,j , define copathe,j = CoPathsalt(sd
e,j , ie).

Phase 5. Output

σ =

(
salt, h1, h2,

(
copathe,j , come,j

ie

)
e≤τ, j≤n

, (ze, auxeN )e≤τ

)
, flag.

Protocol 20: Signing algorithm of the signature scheme

Verification. The verification algorithm is presented below.

Verify(m, pk, σ)

Inputs. A public key pk = (H, y), a messagem ∈ {0, 1}∗, a signature σ.

1. Parse the signature as follows:

σ =

(
salt, h1, h2,

(
copathe,j , come,j

ie

)
e≤τ, j≤n

, (ze, auxeN )e≤τ

)
2. Recompute (πe)e≤τ ← PRG1(h1), where πe ∈ Perm([K − k]);

3. Recompute (ie)e≤τ ← PRG2(h2) and parse each ie as a D-bit string (bed)d≤D .

4. For each iteration e ∈ [τ ],

• For d = 1 to D:
– Denote b = 1− bed;
– Set (Xe

d,b, R
e
d,b, U

e
d,b)← (0, 0, 0) ∈ FK−k

2 × FK−k
2 × FK−k

3 ;
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– For each i ̸= ie:
∗ Recompute sde,ji from copathe,j for each j ∈ [n];
∗ If i ̸= N , recompute (xe,ji , re,ji , ue,ji , come

i ) ← PRG(sde,ji ); else,
parse auxeN as (xeN , ueN ), and compute reN =

⊕
j r

e,j
N where re,jN ←

PRG(sde,jN );
∗ If i[d] = b, update:

- Xe
d,b ← Xe

d,b ⊕
⊕

j x
e
i ;

- Re
d,b ← Re

d,b ⊕
⊕

j r
e
i ;

- U e
d,b ← U e

d,b +
∑

j u
e
i mod 3;

– Recompute (msged,b)d≤D,b∈{0,1},e≤τ by simulating the Phase 3 of the
signing algorithm as below:
∗ zed,0 ←

(
Xe

d ⊕ πe(Re
d,0)||H ′ · zed,0[1]⊕ y

)
;

∗ zed,1 ←
(
ze1 ⊕ zed,0||ze2 ⊕ zed,0[2]

)
;

∗ x̄ed,b ← ze + (1− ze) · π(U e
d,b);

∗ msged,b ← (zed,b,BHW6(x̄
e
d,b));

∗ msged,1−b ← (zed,1−b, 1− BHW6(x̄
e
d,b) mod 3)

5. Check if h1 = H1(m, salt, h11, · · · , hn1 ) where

hj1 ← H1(com
1,j
1 , · · · , com1,j

N , · · · , comτ,j
1 , · · · , comτ,j

N );

6. Check if h2 = H2(m, salt, h1, (msged,b)d≤D,b∈{0,1},e≤τ );

7. Output 1 if both conditions are satisfied.

Protocol 21: Verification algorithm of the signature scheme

7.5.2 Security Analysis of the Threshold-Friendly Signature Scheme

In this section, it is proved that the signature scheme described on Protocol 19, Protocol 20
and Protocol 21 satisfies n-user corruptible existential unforgeability against chosen-message
attacks 7.4.1. Note that since the adversary is not allowed any signature query in the EUFKO
game (Definition 4.1.3), it is not needed to consider a corruptible variant of the notion.

7.5.2.1 Corruptible existential unforgeability

Theorem 7.5.1. Assume that F is a (qs, τ)-instance (t, ϵF)-secure PPRF, that PRG is a (qs, τ)-

instance (t, ϵPRG)-secure PRG, and that any adversary running in time t has at advantage at

most ϵSD against the regular syndrome decoding problem. Model the hash functions H1,H2

as random oracles with output of length 2λ-bit and the pseudorandom generator PRG2 as

a random oracle. Then corrupted chosen-message adversary against the signature scheme
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described in Protocol 14, running in time t, making qs signing queries, and making q1, q2, q3
queries, respectively, to the random oracles H1,H2 and PRG2, succeeds in outputting a valid

forgery with probability

AdvCEUFCMA
Σ (A) ≤ qs (qs + q1 + q2 + q3)

22λ
+ εF + εPRG + ϵSD + Pr[X + Y = τ ] +

1

2λ
,

where X = maxα∈Q1{Xα} and Y = maxβ∈Q2{Yβ} with Xα ∼ Binomial(τ, p) and Yβ ∼
Binomial

(
τ −X, 1

N

)
where Q1 and Q2 are sets of all queries to oracles H1 and H2 and p is a

statistical failure event bounded in Lemma 5.3.1, and set to 2−132 in parameter choices.

Proof. The security analysis proceeds in two parts: first bounding AdvEUFKO(A), then
bounding AdvCEUFCMA(A) using AdvEUFKO(A). The first half of the analysis, bounding
AdvEUFKO(A), is identical to the analysis in section 6.4.2 (up to replacing the single GGM
tree by n GGM trees whose leaves are summed everywhere in the analysis) and yields

AdvEUFKOΣ (A) ≤ ϵSD + Pr[X + Y = τ ] +
1

2λ
,

where εSD,X , Y are as as defined in the statement of Theorem 7.5.1. The crux of the analysis
in this context lies in reducing corruptible existential unforgeability against chosen message
attacks to EUFKO security. This is captured by the following lemma:

Lemma 7.5.1 (EUFKO =⇒ CEUFCMA).

AdvCEUFCMA(A) ≤ AdvEUFKO(A) + qs (qs + q1 + q2 + q3)

22λ
+ ϵF + ϵPRG

To prove Lemma 7.5.1, a sequence of experiments involving A is defined, where the first
corresponds to the experiment in which A interacts with the real signature scheme, and the
last one is an experiment in which A is using only random element independent from the
witness.
Game 1 (Gm1). This corresponds to the actual interaction of A with the real signature
scheme. Upon receiving a query (m, j, (rj)i ̸=j) from A, the signing oracle samples rj :=
(sde,j)e≤τ ←$ ({0, 1}λ)τ , and return σ ← Sign(m, sk; (r1, · · · , rn)). Denote Gmℓ(Forge), the
event that after interacting with the corruptible signing oracle in Game ℓ, A generates a
valid signature σ∗ for a messagem∗ that was not previously queried to the signing oracle.
Game 2 (Gm2). In this game, abort if the sampled salt salt collides with the value sampled
in any of the previous queries to the hash functions H1 or H2, or if the input to PRG2 collides
with the value obtained in any of the previous queries. Therefore, this probability can be
bounded by

|Pr[Gm1(Forge)]− Pr[Gm2(Forge)]| ≤ qs · (qs + q1 + q2 + q3)

22λ
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Game 3 (Gm3). The difference with the previous game is that now before signing a message
uniformly random values h1, h2 and (ie)e≤τ are chosen. Since Phase 1, Phase 3 and Phase 5
are computed as before and the only change compared to the previous game is that the
output of H1 is randomly set as h1, the output of H2 as h2 and the output of PRG2(h2) as
(ie)e≤τ . A difference in the forgery probability can only happen in the event that a query to
H1, H2 or PRG2 was made before; however, in this scenario, Game 2 aborts. Therefore,

Pr[Gm2(Forge)] = Pr[Gm3(Forge)].

Game 4 (Gm4) in this game, upon receiving a query (m, j, (ri)i ̸=j) from A, after sampling
rj := (sde,j)e≤τ ←$ ({0, 1}λ)τ , compute the leaf seed sde,jie

= Fsalt(sd
e,j, ie) and the corre-

sponding co-path copathe,j = CoPathsalt(sd
e,j, ie). Set cpe,j = (ie, copathe,j, sde,jie ) for e = 1

to τ and rj = (cpe,j)u≤τ . Run σ ← Sign(m, sk; (r1, · · · , rn)).
This game is a purely syntactic change: by the design of the signing algorithm, it will output
exactly the same signature as in Game 3 (observe that since PRG2 is programmed to output
(ie)e, no aborts of the signing algorithm will be triggered). Therefore, it holds that

Pr[Gm3(Forge)] = Pr[Gm4(Forge)].

Game 5 (Gm5) in this game, upon receiving a query (m, j, (ri)i ̸=j) from A, instead of
sampling rj := (sde,j)e≤τ ←$ ({0, 1}λ)τ , sample for e = 1 to τ a uniformly random leaf seed
sde,jie

and a uniformly random corresponding co-path copathe,j (note that from Game 3, the
indices ie are sampled ahead of time). Set cpe,j = (ie, copathe,j, sde,jie ) for e = 1 to τ and
rj = (cpe,j)u≤τ . Run σ ← Sign(m, sk; (r1, · · · , rn)).
The only difference between Game 3 and Game 4 is that the leaf seed sde,jie and its corre-
sponding co-path copathe,j are sampled uniformly at random. Distinguishing between the
two games reduces therefore immediately to breaking the (Q, τ)-instance strong security of
the PPRF, where Q is a bound on the number of signing queries from A (cf 6.2.2). Therefore,
it holds that

|Pr[Gm5(Forge)]− Pr[Gm4(Forge)]| ≤ AdvF(A) = εF.

Game 6 (Gm6). In this game, upon receiving a query (m, j, (ri)i ̸=j) from A and for e = 1

to τ , (xe,j
ie , r

e,j
ie , u

e,j
ie , com

e,j
ie ) ←$ FK−k

2 × FK−k
2 × FK−k

3 × {0, 1}λ are sampled at random.
As the seed sde,jie is uniformly random (independent of copathe,j and never revealed by the
signature (it is only used in Game 5 to construct (xe,j

ie , r
e,j
ie , u

e,j
ie , com

e,j
ie )← PRG(sde,jie )), this

game is indistinguishable from the previous one by a direct application of the multi-instance
security of PRG (Section 6.2.1), and it holds that

|Pr[Gm5(Forge)]− Pr[Gm4(Forge)]| ≤ AdvPRG(A) = ϵPRG.

Game 7 (Gm7). In this game, the behavior of the emulation in Phase 3 is modified. Namely,
the messages (msged,b)d≤D,b∈{0,1},e≤τ are constructed using instead the same procedure as
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the verifier in step 4 of the Verify algorithm (Protocol 21). Note that this process yields an
identical construction of the msged,b by the correctness of the verification algorithm, and can
be used in the emulation because the challenges ie are sampled ahead of time. Note also
that the witness x is at this stage only used in two places: in the computation of xe

N in auxeN ,
and in the computation of ze1 = x⊕ πe(re). It holds that

Pr[Gm7(Forge)] = Pr[Gm6(Forge)].

Game 8 (Gm8). In this game, auxeN ←$ FK−k
2 × FK−k

3 and ze1 ←$ FK−k
3 for e = 1 to τ are

sampled. Note that auxeN = (xe
N , u

e
N) is constructed as

xe
N = x⊕

N⊕
i=1

n−1⊕
j=1

xe,j
i , ue

N = re −
N−1∑
i=1

n∑
j=1

ue,j
i mod 3.

Because each of these terms is masked by a uniformly random value (respectively xe,j
ie and

ue,j
ie ), and because x ⊕ πe(re) is masked by πe(re,jie ), all are uniformly random over FK−k

2 ,
FK−k
3 , and FK−k

2 respectively, and it holds that

Pr[Gm8(Forge)] = Pr[Gm7(Forge)].

Observe that in Game 8, the emulation does not use the witness x anymore, hence it does not
need the secret key sk. Therefore, an adversary outputting a forgery in Game 8 immediately
implies an adversary with the same success probability against the EUFKO security of the
signature scheme:

Pr[Gm8(Forge)] = AdvEUFKO(A).

This concludes the proof of Lemma 7.5.1 and Theorem 7.5.1.

7.5.3 The functionality F2,3

On Functionality 1, the mod2-to-mod3 functionality is represented. A "corruptible" variant
of the functionality is described, where the corrupted parties define their output shares, and
the honest parties’ output shares are sampled consistently with the shares of the corrupted
parties.

F2,3

Parameters. The functionality interacts with n users U1, · · · ,Un. C denotes the (possibly
empty) subset of corrupted users.

Input. Each user Uj sends a vector uj ∈ Ft
2. Additionally, each corrupted user Uj sends a

vector u′j ∈ Ft
3. The functionality aborts if it receives incorrectly formatted inputs, or

if they do not all have the same length.
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Functionality. • Compute u =
⊕

j≤n uj .

• Compute u′ =
∑

j∈C u
′
j .

• Sample n− |C| uniformly random shares (u′j)j∈[n]\C of u− u′ mod 3 over F3.

• Output u′j to each honest user Uj .

Functionality 1: ideal functionality for converting sums from mod2 to mod3

7.5.3.1 Instantiating the functionality In this section, simple protocols are provided to
securely instantiateF2,3 in the malicious setting using recent results on pseudorandom corre-
lation generators [BCG+18; BCG+19b; BCG+19a]. Before proceeding with their description,
two observations are made:

• The simulation of the threshold signing protocol is oblivious to whether the output of
F2,3 is correct or not. This is because Sim emulates the protocol without using the
share output by F2,3 (or uses a random share instead when flag = fail), and because
the protocol does not verify that the corrupted parties are actually using the correct
output obtained via the functionality. This is a relatively standard behavior in threshold
signatures: the correct behavior of the participants is guaranteed by the validity of
the signature produced by the protocol. In fact, many existing threshold signatures
leverage a similar observation to obtain more efficient constructions. In this context,
this implies that only the instantiation of the functionality is required to guarantee
correctness when the users are honest and privacy of the honest parties’ inputs when
some participants are malicious. This eliminates the need for any expensive zero-
knowledge proofs or similar mechanisms.

• In the model where key generation is executed by a trusted entity (typically the owner
of sk), it can be assumed that the trusted dealer additionally generates and includes in
the key shares skj helper strings (e.g., correlated randomness) that the parties can use
to facilitate the secure instantiation of F2,3.

A construction for n = 2. Equipped with these observations, the constructions are now
presented, starting with the two-party setting (n = 2). First, some background on PCGs is
recalled. A PCG for a target correlation C (a 2-party correlation is a distribution over pairs
of values) is a pair (Setup,Expand) such that

• Setup(1λ) produces short keys c0, c1, and

• Expand(σ, cσ) outputs a long string yσ,

such that (y0, y1) are indistinguishable from a random sample from C . A formal definition
is provided in Section 3.4.6 (taken almost verbatim from [BCC+23]). The (length-t) OLE
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correlation over a field F refers to the following correlation: the two users U1,U2 receive
(z1,x) ∈ (Ft)2 and (z2,y) ∈ (Ft)2 respectively, such that

z0 + z1 = x⊙ y,

where ⊙ denotes the Schur (i.e., component-wise) product. A PCG for the OLE correlation
is said to be programmable if, informally, the randomness used to generate x or y can be
fixed across different instances (such that U1 can obtain an OLE (z1,x) with a user U2, and a
second tuple (z′1,x) with the same x with another user U3). A formal definition is provided
in Section 3.4.6.
The following result from [BCC+23; BBC+24] is used:

Lemma 7.5.2. Assuming the quasi-abelian syndrome decoding assumption, a programmable

PCG exists for the length-t OLE correlation over Fq for any q > 2. Furthermore, the key size is

bounded by O(λ3 log t), and the runtime of Expand is Õ(t).

The work of [BBC+24] is noted to introduce a number of algorithmic and low-level opti-
mizations that demonstrate that this PCG achieves very good concrete performance over
small fields: [BBC+24] reports generating 12 million OLEs over F4. While the setting here is
slightly different as it operates over F3, most of their optimizations carry over directly to
this setting, and a similar, if not better, efficiency is expected.

Π2
2,3

Parameters. A PCG (Setup,Expand) for length-t OLEs over F3

Trusted setup. The dealer generates (c1, c2)←$ Setup(1λ) and adds them to the secret keys
of U1,U2 respectively.

Protocol.

1. For i = 1, 2, given inputs ri ∈ Ft
2, user Ui generates (zi,xi) ← Expand(i, ci)

and broadasts vi = xi + ri mod 3.

2. User U1 outputs z1 − v2 ⊙ x1 + r1 mod 3.

3. User U2 outputs z2 + v1 ⊙ r2 + r2 mod 3.

Protocol 22: A 2-party protocol for securely instantiating the functionality F2,3
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It is first shown that Protocol 22 is correct. Over F3, the following holds:

(z1 − v2 ⊙ x1 + r1) + (z2 + v1 ⊙ r2 + r2)

=(z1 + z2) + (r1 + x1)⊙ r2 − (r2 + x2)⊙ x1 + r1 + r2

= x1 ⊙ x2 + r1 ⊙ r2 + x1 ⊙ r2 − r2 ⊙ x1 − x1 ⊙ x2 + r1 + r2

= r1 ⊙ r2 + r1 + r2

= r1 ⊕ r2.

Security immediately follows from the fact that, by the PCG security, xi is computationally
indistinguishable from a random vector overFt

3 given c3−i. Consequently, vi computationally
masks ri over F3.

General case. For an arbitrary number of users, a generalization of protocol Π2,3 in a
tree-based fashion is relied upon. The description begins with a protocol Π2i

xor, where 2i
parties, given as input additive shares over F3 of two bits a, b, generate additive shares over
F3 of the xor a⊕ b.

Π2i

xor

Trusted setup. The dealer samples (u, v)←$ F2
3 and set (uj , vj , wj)j≤2i to be random shares

of (u, v, u · v) over F3. Each user Uj receives (uj , vj , wj).

Protocol. The users have F3-shares (aj)j≤2i and (bj)j≤2i of bits a, b.

1. Each user Uj broadcasts uj + aj mod 3 and vj + bj mod 3. All users reconstruct∑
j(uj + aj) = u+ a and

∑
j(vj + bj) = v + b.

2. Each user Uj outputs zj = (a+ u)bj − (v + b)uj + wj + aj + bj mod 3.

Protocol 23: A 2i-party protocol for computing shares of the XOR of two bits shared over F3

Correctness follows easily by inspection, as
∑

j zj = (a+ u)b− (v + b)u+ uv + a+ b =

ab + a + b = a ⊕ b over F3, and security follows from the fact that each aj (resp. bj)
is perfectly masked by uj (resp. vj) over F3. Equipped with protocol Π2i

xor, a protocol is
described (in the F2i

xor-hybrid model) that securely instantiates F2,3 with n users.

Πn
2,3

Input. The parties Uj each have an input rj ∈ F2.

Protocol. Assume that n = 2d is a power of 2. Place the n on the leaves of a full binary
tree of depth d. The protocol proceeds in d rounds. In round i, all users who share a
common ancestor on the i+ 1-th layer interact. Set i = 1 to be the leaf layer.
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1. Every 2i-tuples S of users who have an ancestor on the layer i + 1 (there are
2d−i−1 disjoint tuples) partition S into two equal-sized sets S0, S1 of users that
share a common ancestor on the i-th layer. The users (Uj)j∈Sb

have additive
shares of a bit rSb

over F3. By adding dummy 0 shares, it is possible to assume
that all users (Uj)j∈S have 2j-user shares of (rS0 , rS1).

2. The users (Uj)j∈S invokeF2i
xor to obtain shares of rS := rS0⊕rS1 and set i = i+1

3. When i = d, all users output their F3-shares of r[2d] =
⊕

rj .

Protocol 24: An n-party protocol for securely instantiating the functionality Fn
2,3 in the F2i

xor-hybrid model

The proof of correctness and privacy against malicious users of Protocol 24, in the F2i

xor-
hybrid, is straightforward. The protocol Πn

2,3 can be generalized to producing F3-shares of
the XOR of Ft

2-vectors via direct parallel repetition.
Eventually, instantiating F2i

xor via Π2i

xor requires access to a trusted source of random 2i-user
Beaver triples over F3. This can be instantiated efficiently using the PCG for OLEs over
F3 from [BCC+23]: as their PCG is programmable, and as explained in their work, if each
pair of users is given a pair of (programmed) PCG seeds, they can locally recombine the
pseudorandom outputs into 2i-user F3-Beaver triples. This yields the following efficient
instantiation ofF2,3: in the trusted setup phase, the trusted dealer generates asmany pairwise
PCG seeds as required to instantiate Π2i

xor at every level of the tree-based construction
from Protocol 24. Then, the parties locally expand their seeds into arbitrary length Beaver
triples over F3 and run the efficient protocol from Protocol 24 to convert F2-shares into
F3-shares.

7.5.4 The Threshold Signature

In this section, a threshold signature scheme constructed from the threshold-friendly sig-
nature scheme introduced in Section 7.5.1 is presented. The construction assumes the
following building blocks and functionalities:

• Let Commit denote an extractable and equivocable commitment scheme. Concretely,
a possible instantiation of Commit is as Commit(m; r) = H′(m; r), where H′ is a
random oracle to which the simulator is given programmable access.

• Fsalt is a random coin-sampling functionality: upon receiving the signing session ID
from all users, it samples salt←$ {0, 1}2λ and outputs it to all users. This functionality
can be instantiated via a simple commit-and-open protocol.

• F2,3 denotes the mod2-to-mod3” functionality, which converts additive shares of a
vector modulo 2 into additive shares of the same vector modulo 3. The ideal func-
tionality is represented on Functionality 1. In Section 7.5.3.1, efficient protocols for
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securely instantiating the functionality using pseudorandom correlation generators
are introduced.

7.5.4.1 The threshold signing protocol The whole protocol is described below.

Threshold Signing

Key-generation (trusted setup).
Inputs: A security parameter λ.

1. Run (pk, sk)←$ KeyGen(1λ).

2. Parse sk = (H, (x̃1, · · · , x̃n). Output skj = (H, x̃j , y) to each Uj .

Sampling the salt. All parties invoke Fsalt and receive a global salt salt ∈ {0, 1}2λ. All
parties derive (salt1, · · · , saltτ )← PRG(salt).

Building the trees. For each iteration e ∈ [τ ], each user Uj proceeds as follows:

• Sample sde,j ←$ {0, 1}λ;

• For d = 1 to D, set (Xe,j
d,0, R

e,j
d,0, U

e,j
d,0)← (0, 0, 0);

• Set xe,jN ← x̃j , ueN ← 0, and re,j ← 0;

• For i = 1 to N − 1:

1. Compute sde,ji ← Fsalt(sd
e,j , i);

2. (xe,ji , re,ji , ue,ji , come,j
i )← PRG(sde,ji );

3. xe,jN ← xe,jN ⊕ xe,ji , re,j ← re,j ⊕ re,ji and ue,jN ← ue,jN + ue,ji mod 3;

• On node N :

1. Compute sde,jN ← Fsalt(sd
e,j , N)

2. Set (re,jN , come,j
N )← PRG(sde,jN )

3. Set re,j ← re,j ⊕ re,jN

4. Send re,j to the F2,3 functionality in order to obtain ue,j . // This is the Shift
phase of the template protocol in Protocol 18.

5. Set ue,jN ← ue,j − ue,jN mod 3

6. Broadcast (xe,jN , ue,jN ). Upon receiving all shares, all user reconstruct auxeN =

(xeN , ueN ) =
(⊕

j x
e,j
N ,
∑

j u
e,j
N mod 3

)
;

• For i = 1 to N , for all d ≤ D such that i[d] = 0, set: // i[d] is the d-th bit of the
integer i.

– Xe,j
d,0 ← Xe,j

d,0 ⊕ xe,ji ;

– Re,j
d,0 ← Re,j

d,0 ⊕ re,ji ;

– U e,j
d,0 ← U e,j

d,0 + ue,ji mod 3.

Commit-and-open phase. For each iteration e ∈ [τ ], each user Uj proceeds as follows:
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• Set hj1 ← H1(com
1,j
1 , · · · , com1,j

N , · · · , comτ,j
1 , · · · , comτ,j

N ).

• Broadcast cj ←$ Commit(hj).

• Upon receiving all (cℓ)ℓ∈[n], broadcast hj and the opening of cj .

• If an opening does not verify, abort the protocol. Else, all users compute h1 ←
H1(m, salt, h11, · · · , hn1 ).

• Compute (πe)e≤τ ← PRG1(h1). // The use of a permutation to shuffle the
correlated randomness replaces the VOLE consistency check in 5.2.1.

Distributed virtual protocol. Let (1pj )j∈[n] denote arbitrary shares of 1 modulo p = 2 or 3.

• Each user Uj sets ze,j1 ← x̃ ⊕ πe(re,j), ze,j2 ← H ′ · ze,j1 ⊕ y · 12j , and ze,j ←
(ze,j1 ||ze2).

• All users broadcast ze,j and reconstruct ze =
⊕

j z
e,j .

• For d = 1 to D, set:

– ze,jd,0[1] ← Xe,j
d,0 ⊕ πe(Re,j

d,0), z
e,j
d,0[2] ← H ′ · ze,jd,0[1] ⊕ y, and ze,jd,0 ←

(ze,jd,0[1]||z
e,j
d,0[2]);

– ze,jd,1[1]← ze,j1 ⊕ ze,jd,0, z
e,j
d,1[2]← ze,j2 ⊕ ze,jd,0[2], and ze,jd,1 ← (ze,jd,1[1]||z

e,j
d,1[2]);

– x̄e,jd,0 ← ze · 13j + (1− ze) · πe(U e,j
d,0) mod 3

– x̄ed,1 ← x̃j − x̄e,jd,0 mod 3.

– For b = 0, 1, set msge,jd,b ← (ze,jd,b,BHW6(x̄
e,j
d,b)).

– For b = 0, 1, all users broadcast msge,jd,b and reconstruct msged,b =∑
j msge,jd,b mod 3.

• Set h2 ← H2(m, salt, h1, (msged,b)d≤D,b∈{0,1},e≤τ ).

• Set (ie)e≤τ ← PRG2(h2).

• Each user Uj broadcasts copathe,j = CoPathsalt(sd
e,j , ie) and come,j

ie
for e = 1

to τ . // This is the Opening phase in the template protocol of Protocol 18.

Output. The parties abort if the signature σ below does not verify.

σ =

(
salt, h1, h2,

(
copathe,j , come,j

ie

)
e≤τ, j≤n

, (ze, auxeN )e≤τ

)
.

7.5.4.2 Security analysis

Theorem 7.5.2. Let A denote an adversary corrupting at most n− 1 users, engaging in any

polynomial number Ns of threshold signing sessions, making at most Q queries to the random

oracle H1 and to the ideal cipher, and outputting a forgery (m
∗, σ∗) after all sessions, wherem∗

is a message that was never signed during a signing session. Then in the (Fsalt,F2,3)-hybrid
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model, it holds that

Pr[Verify(m, pk, σ∗) = 1] ≤ Q2 + NsnQ

22λ
+ AdvCommit(A) + AdvCEUFCMA(A).

Proof. Let A denote an adversary corrupting all users except Uℓ (the case of a smaller
number of corrupted parties proceeds similarly to the all-but-one corruption case). Below
is a description of a simulator Sim that interacts with the corruptible signing functionality
and is given (non-programming) access to the random oracle H1 and to the ideal cipher
underlying the multi-instance PPRF.

KeyGen. Sim invokes the key generation of the corruptible signing oracle and receives
pk = (sd, y). It recomputesH ← PRG(sd) and picks (x̃j)j ̸=ℓ ←$ (FK−k

2 )n−1 uniformly
at random. It outputs skj = (H, x̃j, y) to each corrupted user Uj .

Sampling the salt. Sim honestly emulates Fsalt.

Building the trees. Sim stores the inputs r̃e,j of all corrupted users to F2,3 and randomly
samples (ue,j)j ̸=ℓ ←$ (FK−k

3 )n−1. It returns ue,j to each corrupted user Uj .

Commit-and-open phase. Sim broadcasts a dummy commitment cℓ. Upon receiving all
commitments (cj)j ̸=ℓ, for each j ̸= ℓ,

• Sim extracts the value h̃j contained in cj .

• Sim searches among all queries to H1 for a preimage of h̃j of the form comj =

(com1,j
1 , · · · , com1,j

N , · · · , comτ,j
1 , · · · , comτ,j

N ). If there is no such preimage, or if
there are multiple preimages, or if the preimage is not correctly formatted, Sim
raises a flag fail.

• For all tuples comj for which Sim did not raise a flag fail, for e = 1 to τ , Sim
searches among all queries to the ideal cipher for preimages on the nodes of a
GGM tree with salt salte and commitments (come,j

1 , · · · , come,j
N ) at the leaves.

If neither a root seed sdj,e nor a set of seeds (v1e,j, · · · , vDe,j) on the co-path to
a leaf i∗e,j together with the i∗e,j-th leaf seed sd∗e,j is found, it raises a flag fail.
Otherwise, it sets Ke,j to be either sde,j or cpe,j = (i∗e,j, v

1
e,j, · · · , vDe,j, sd∗e,j) and

rj ← (Ke,j)e≤τ .

• If Sim did not raise a flag fail, it sends (m, ℓ, (rj)j ̸=ℓ) to the corruptible signing
functionality. Upon receiving a signature σ, it recomputes hℓ

1 from the signature
via the verification algorithm.

• Otherwise, Sim picks random root seeds sde,ℓ and constructs hℓ
1 as an honest

user, using ue,ℓ ←$ FK−k
3 as simulated output of F2,3.

• Sim adapts the opening of cℓ to hℓ
1.
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Distributed virtual protocol (flag ̸= fail). Provided that no flag fail is raised, Sim can
recompute at this stage from the rj all values ze,j,msge,jd,b for j ̸= ℓ, e = 1 to τ , d = 1

to D, and b ∈ {0, 1}. From σ, by running the verification algorithm, Sim obtains ze
and msged,b for e = 1 to τ , d = 1 to D, and b ∈ {0, 1}.

• For e = 1 to τ , ze,ℓ ← ze ⊕
⊕

j ̸=ℓ z
e,j is defined and broadcasted.

• For e = 1 to τ , d = 1 toD, and b ∈ {0, 1},msge,ℓd,b ← msged,b−
∑

j ̸=ℓ msge,jd,b mod 3

is broadcasted.
• Eventually, (copathe,ℓ, come,ℓ

ie ) for e = 1 to τ is computed from σ and broadcasted.

Distributed virtual protocol (flag = fail). If flag = fail, uniformly random ze,ℓ,msge,ℓd,b

are broadcasted, as well as the correct co-path and commitment (copathe,ℓ, come,ℓ
ie )

computed from random root seeds.

As Sim is only given access to the corruptible signing functionality, the advantage of A in
outputting a valid forgery (m∗, σ∗) after interacting polynomially many times with Sim is
at most AdvCEUFCMA(A). It is now shown that Sim’s emulation is indistinguishable from a
real interaction with Uℓ. This is proved via a sequence of game hops.
Game 1 (Gm1). This is the real game. The game honestly runs the key generation and
distributes skj to each corrupted user Uj . The game honestly emulates Uℓ.
Game 2 (Gm2). In this game, a flag fail is raised if any collision occurs in H1 or in the
ideal cipher. As the total number of queries to either H1 or the ideal cipher is at most Q,
Pr[fail(Gm2)] ≤ Q2

22λ
holds.

Game 3 (Gm3). In this game, a flag fail is raised if a signature contains hj
1 = H1(com

j) such
that comj was not queried to H1 before sending cj , and a flag ver is raised if any of the two
checks of this same signature verifies. By the one-wayness of H1, Pr[ver | fail(Gm3)] ≤ NsnQ

22λ

holds, where the bound is reached only if all signing sessions are performed in parallel and
the adversary attempts to find a preimage to any cj of any signing session after sending cj
(and before running the distributed virtual protocol).
Game 4 (Gm4). In this game, when flag = fail, Uℓ is emulated as the simulator Sim,
computing an honest GGM tree but sampling dummy ue,ℓ, ze,ℓ, msge,ℓd,b. Conditioned on
flag = fail, with probability at least 1 − NsnQ

22λ
, both checks (for h1 and h2) fail due to an

incorrect hj
1. In this case, all honestly computed ze,ℓ, msge,ℓd,b are distributed as random

elements over FK
2 and FK

3 × Fw
3 , respectively (they are random shares of values for which

one share is missing).
Game 5 (Gm5). This game is the simulation, where Sim does not use the secret key sk.
Instead, Sim interacts with the corruptible signing oracle. Observe that whenever flag ̸= fail,
the only difference between the transcript of the simulated interaction and the transcript
of Game 4 is the commitment cℓ, which Sim computes as an equivocal commitment to a
dummy string. Therefore, the advantage of any adversary A in distinguishing Game 4 from
Game 5 is at most AdvCommit(A). This concludes the proof of Theorem 7.5.2.
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8.1 Conclusion

The research carried out in this thesis brings notable advancements in code-based post-
quantum signature schemes, with a strong focus on integrating the MPC-in-the-Head
(MPCitH) paradigm to achieve secure, efficient, and scalable digital signatures: the thesis
introduces new code-based primitives, with related meaningful optimizations and extends
them to a practical threshold signature construction.
The first contribution presents a five-round zero-knowledge proof of knowledge built on
the Regular Syndrome Decoding (RSD) problem using the MPCitH paradigm. By applying
the Fiat-Shamir heuristic, the interactive protocol is turned into a digital signature scheme
with competitive performance in terms of both signature size and computational efficiency.
The second contribution builds on the first by integrating an innovative hypercube technique
that simplifies and accelerates verification, delivering a faster signature generation process.
Moreover, the contribution focuses on enhancing the MPCitH paradigm by introducing
multi-instance puncturable pseudorandom functions (PPRFs). Replacing conventional hash-
based approaches with block ciphers drastically reduces both signing and verification times,
pushing the performance boundaries of MPCitH signatures.
The third contribution generalizes the single-user signature scheme into a threshold signature
framework, solving key challenges associatedwith distributed signing acrossmultiple parties.
The resulting construction maintains scalability, balancing the signature size and the number
of participants, and demonstrates real-world applicability for decentralized systems.
In summary, this thesis combines rigorous theoretical design with practical performance im-
provements, aligning with NIST’s post-quantum cryptographic objectives while addressing
practical needs in blockchain and other decentralized applications.
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8.2 Future Directions

While the results presented in this manuscript mark a significant step in optimizing code-
based digital signatures and extending them to multi-user schemes, a number of open
questions remain and future directions can expand across different horizons:

1. Enhancing the efficiency of threshold signatures and extending them to multisigna-
tures, to enable their integration into blockchain systems;

2. Addressing fundamental technical challenges in the underlying MPC-in-the-Head
framework;

3. Integrate combinatorial approaches with modern techniques, to further optimize
signature schemes.

Towards Multisignature Schemes

Extending threshold signatures into full multi-signature schemes is a natural next step. While
threshold signatures allow a specific subset of users to sign a message collaboratively, multi-
signature schemes go further: any arbitrary group of users can produce a single, compact
signature. However, before achieving such a huge level of scalability, some improvements
in the threshold protocol have to be studied.

Signature Size Optimization Current constructions achieve a signature size of λ2 ·N ,
but the lower bounds established by [DKR24] suggest that O(λ ·N) is theoretically possible
for a (black-box) threshold signature scheme from MPC-in-the-head.

Question 8.2.1. Is it possible to construct a threshold MPCitH signature with size O(λ ·N),

achieving better scalability?

Round Complexity Reduction The current protocol requires O(logN) rounds. Reduc-
ing this to a constant would enhance usability in real-world settings where network delays
are a factor.

Question 8.2.2. Can the round complexity of threshold MPCitH be reduced to a constant while

maintaining its efficiency and security guarantees?

Optimizing MPC-in-the-Head

As largely discussed, extending MPC-in-the-Head to collaborative multi-user settings like
threshold and multisignatures creates non-trivial communication and computational over-
head. Defining new techniques for thresholdizing MPCitH and improving its performance
is crucial for practical uses.
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Non-Blackbox Optimization The lower bound of [DKR24] shows that no black-box
solution will have a constant signature size. Unfortunately, non-blackbox evaluation seems
to require distributively computing the GGM trees, which incurs prohibitive costs.

Question 8.2.3. Could it be possible to design specially crafted MPCitH signatures that can be

efficiently "thresholdized" via a non-blackbox distributed protocol that does not require fully

expanding a distributed GGM tree?

Leveraging the Half-Tree Methodology The half-tree technique [GYW+23] is a recent
methodology that can be used to reduce the number of calls to the ideal cipher in GGM-style
PPRFs. Adapting this methodology could further optimize MPCitH-based constructions,
with a corresponding enhancement in their threshold variants.

Question 8.2.4. Can the half-tree methodology be adapted to yield multi-instance PPRFs in

the ideal cipher model?

Combining Methodologies

The combinatorial approaches to RSD-based signatures developed in this thesis could be
enhanced by integrating them with modern methodologies like VOLEitH. Such hybrid
approaches may further reduce signature size and improve overall efficiency.

Question 8.2.5. How can combinatorial RSD-based techniques be integrated with VOLEitH to

achieve compact and efficient signature schemes?

By addressing these interconnected challenges, future work can strengthen the theoretical
framework and enhance the practical applicability of the presented cryptographic primitives.
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